Eine Charakterisierung der Menge Ass(u) in Kommutativen Noetherschen Ringen
Publications de l'Institut Mathématique, _N_S_33 (1983) no. 47, p. 179
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Let $R$ be a commutative noetherian ring. For any ideal
$\frak U$ of $R$ the set Ass$(\frak U)$ of all associated prime ideals of
$\frak U$ is a finite set $P$ of prime ideals of $R$. If a finite set $P$ of
prime ideals of $R$ contains no prime ideal of the height 0, i.e., no minimal
prime ideal of $(0)$, then it is well known that there exists an ideal
$\frak U$ of $R$ such that $P= \text{Ass}(\frak U)$ [1, 9.1]. It seems to
be unknown what the precise necessary and sufficient condition is, on a
finite set $P$ of primes, for the existence of such an ideal $\frak U$
[1, p.~68]. We answer here this question.
Classification :
13A17 13E05
Keywords: Noetherian commutative rings, primary decomposition of ideals, associated prime ideals
Keywords: Noetherian commutative rings, primary decomposition of ideals, associated prime ideals
@article{PIM_1983_N_S_33_47_a25,
author = {Veselin Peri\'c},
title = {Eine {Charakterisierung} der {Menge} {Ass(u)} in {Kommutativen} {Noetherschen} {Ringen}},
journal = {Publications de l'Institut Math\'ematique},
pages = {179 },
year = {1983},
volume = {_N_S_33},
number = {47},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1983_N_S_33_47_a25/}
}
Veselin Perić. Eine Charakterisierung der Menge Ass(u) in Kommutativen Noetherschen Ringen. Publications de l'Institut Mathématique, _N_S_33 (1983) no. 47, p. 179 . http://geodesic.mathdoc.fr/item/PIM_1983_N_S_33_47_a25/