An Alternative Theorem for Continuous Relations and its Applications
Publications de l'Institut Mathématique, _N_S_33 (1983) no. 47, p. 163
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In this paper, improving [10, Lemma 3.5] of M. S.
Stanojević, we prove the following alternative theorem: If $S$ is a
continuous relation from a connected space $X$ into a space $Y$ and $V$
is a subset of $Y$ such that at least one of the following conditions
is fulfilled: (i) $V$ is both open and closed, (ii) $S$ is open-valued
and $V$ is closed, (iii) $S^{-1}$ is open-valued and $V$ is open, (iv)
both $S$ and $S^{-1}$ are open-valued; then either $S(x)\subset V$ for
all $x\in X$, or $S(x)\setminus V\neq \emptyset$ for all $x\in X$.
Classification :
54C60
Keywords: Open or closed-valued, lower or upper semicontinuous relations (multifunctions)
Keywords: Open or closed-valued, lower or upper semicontinuous relations (multifunctions)
@article{PIM_1983_N_S_33_47_a22,
author = {\'Akos M\"unnich and \'Arp\'ad Sz\'az},
title = {An {Alternative} {Theorem} for {Continuous} {Relations} and its {Applications}},
journal = {Publications de l'Institut Math\'ematique},
pages = {163 },
publisher = {mathdoc},
volume = {_N_S_33},
number = {47},
year = {1983},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1983_N_S_33_47_a22/}
}
TY - JOUR AU - Ákos Münnich AU - Árpád Száz TI - An Alternative Theorem for Continuous Relations and its Applications JO - Publications de l'Institut Mathématique PY - 1983 SP - 163 VL - _N_S_33 IS - 47 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PIM_1983_N_S_33_47_a22/ LA - en ID - PIM_1983_N_S_33_47_a22 ER -
Ákos Münnich; Árpád Száz. An Alternative Theorem for Continuous Relations and its Applications. Publications de l'Institut Mathématique, _N_S_33 (1983) no. 47, p. 163 . http://geodesic.mathdoc.fr/item/PIM_1983_N_S_33_47_a22/