An Alternative Theorem for Continuous Relations and its Applications
Publications de l'Institut Mathématique, _N_S_33 (1983) no. 47, p. 163 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In this paper, improving [10, Lemma 3.5] of M. S. Stanojević, we prove the following alternative theorem: If $S$ is a continuous relation from a connected space $X$ into a space $Y$ and $V$ is a subset of $Y$ such that at least one of the following conditions is fulfilled: (i) $V$ is both open and closed, (ii) $S$ is open-valued and $V$ is closed, (iii) $S^{-1}$ is open-valued and $V$ is open, (iv) both $S$ and $S^{-1}$ are open-valued; then either $S(x)\subset V$ for all $x\in X$, or $S(x)\setminus V\neq \emptyset$ for all $x\in X$.
Classification : 54C60
Keywords: Open or closed-valued, lower or upper semicontinuous relations (multifunctions)
@article{PIM_1983_N_S_33_47_a22,
     author = {\'Akos M\"unnich and \'Arp\'ad Sz\'az},
     title = {An {Alternative} {Theorem} for {Continuous} {Relations} and its {Applications}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {163 },
     publisher = {mathdoc},
     volume = {_N_S_33},
     number = {47},
     year = {1983},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1983_N_S_33_47_a22/}
}
TY  - JOUR
AU  - Ákos Münnich
AU  - Árpád Száz
TI  - An Alternative Theorem for Continuous Relations and its Applications
JO  - Publications de l'Institut Mathématique
PY  - 1983
SP  - 163 
VL  - _N_S_33
IS  - 47
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1983_N_S_33_47_a22/
LA  - en
ID  - PIM_1983_N_S_33_47_a22
ER  - 
%0 Journal Article
%A Ákos Münnich
%A Árpád Száz
%T An Alternative Theorem for Continuous Relations and its Applications
%J Publications de l'Institut Mathématique
%D 1983
%P 163 
%V _N_S_33
%N 47
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1983_N_S_33_47_a22/
%G en
%F PIM_1983_N_S_33_47_a22
Ákos Münnich; Árpád Száz. An Alternative Theorem for Continuous Relations and its Applications. Publications de l'Institut Mathématique, _N_S_33 (1983) no. 47, p. 163 . http://geodesic.mathdoc.fr/item/PIM_1983_N_S_33_47_a22/