Note on Dispersion of Xalpha
Publications de l'Institut Mathématique, _N_S_33 (1983) no. 47, p. 23
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Some inequalities for moments of $X^\alpha$, $0\alpha\leq 1$,
$X$ nonneg. r. v., are presented, for example $DX^\alpha\leq (DX)^\alpha$,
$DX^\alpha\leq (DX)/(EX)^{2(1-\alpha)}$,
$
(EX)^\alpha-EX^\alpha \leq (1-\alpha)(DX)/(EX)^{2-\alpha}.
$
It is proved that $nD\overline X_n^\alpha\to\alpha^2(DX)/(EX)^{2(1-\alpha)}$,
$n\to\infty$, where $X_1,X_2,\dots,X_n$ are i. \i d. r. v. and
$\overline X_n= (X_1+X_2+\dots+ X_n)/n$. The estimation of $\sqrt{EX}$
is considered, and for binominal case some numerical evaluations are
given.
Classification :
60E15 62F10 62F11 62F12
Keywords: nonnegative random variables, inequalities for moments, unbias estimation, binomial distribution
Keywords: nonnegative random variables, inequalities for moments, unbias estimation, binomial distribution
@article{PIM_1983_N_S_33_47_a2,
author = {Dragan Banjevi\'c and D. Brati\v{c}evi\'c},
title = {Note on {Dispersion} of {Xalpha}},
journal = {Publications de l'Institut Math\'ematique},
pages = {23 },
year = {1983},
volume = {_N_S_33},
number = {47},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1983_N_S_33_47_a2/}
}
Dragan Banjević; D. Bratičević. Note on Dispersion of Xalpha. Publications de l'Institut Mathématique, _N_S_33 (1983) no. 47, p. 23 . http://geodesic.mathdoc.fr/item/PIM_1983_N_S_33_47_a2/