On N-dimensional Idempotent Matrices
Publications de l'Institut Mathématique, _N_S_33 (1983) no. 47, p. 119
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
An $n\times n$ matrix $A= (a_{ij})$ will be called a
2-dimensional matrix of order $n$. We shall study 2 $m$-dimensional
idempotent matrices of order $n$ with respect to an associative matrix
product.
Classification :
15A99 16A32
Keywords: Multidimensional matrices, idempotent, $n$-dimensional idempotent matrices
Keywords: Multidimensional matrices, idempotent, $n$-dimensional idempotent matrices
@article{PIM_1983_N_S_33_47_a16,
author = {Jin Bai Kim and James E. Dowdy},
title = {On {N-dimensional} {Idempotent} {Matrices}},
journal = {Publications de l'Institut Math\'ematique},
pages = {119 },
publisher = {mathdoc},
volume = {_N_S_33},
number = {47},
year = {1983},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1983_N_S_33_47_a16/}
}
Jin Bai Kim; James E. Dowdy. On N-dimensional Idempotent Matrices. Publications de l'Institut Mathématique, _N_S_33 (1983) no. 47, p. 119 . http://geodesic.mathdoc.fr/item/PIM_1983_N_S_33_47_a16/