On N-dimensional Idempotent Matrices
Publications de l'Institut Mathématique, _N_S_33 (1983) no. 47, p. 119 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

An $n\times n$ matrix $A= (a_{ij})$ will be called a 2-dimensional matrix of order $n$. We shall study 2 $m$-dimensional idempotent matrices of order $n$ with respect to an associative matrix product.
Classification : 15A99 16A32
Keywords: Multidimensional matrices, idempotent, $n$-dimensional idempotent matrices
@article{PIM_1983_N_S_33_47_a16,
     author = {Jin Bai Kim and James E. Dowdy},
     title = {On {N-dimensional} {Idempotent} {Matrices}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {119 },
     publisher = {mathdoc},
     volume = {_N_S_33},
     number = {47},
     year = {1983},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1983_N_S_33_47_a16/}
}
TY  - JOUR
AU  - Jin Bai Kim
AU  - James E. Dowdy
TI  - On N-dimensional Idempotent Matrices
JO  - Publications de l'Institut Mathématique
PY  - 1983
SP  - 119 
VL  - _N_S_33
IS  - 47
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1983_N_S_33_47_a16/
LA  - en
ID  - PIM_1983_N_S_33_47_a16
ER  - 
%0 Journal Article
%A Jin Bai Kim
%A James E. Dowdy
%T On N-dimensional Idempotent Matrices
%J Publications de l'Institut Mathématique
%D 1983
%P 119 
%V _N_S_33
%N 47
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1983_N_S_33_47_a16/
%G en
%F PIM_1983_N_S_33_47_a16
Jin Bai Kim; James E. Dowdy. On N-dimensional Idempotent Matrices. Publications de l'Institut Mathématique, _N_S_33 (1983) no. 47, p. 119 . http://geodesic.mathdoc.fr/item/PIM_1983_N_S_33_47_a16/