Level Sets of Polynomials in Several Real Variables
Publications de l'Institut Mathématique, _N_S_33 (1983) no. 47, p. 83 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

By generalizing the concept of homogeneous polynomial and by adapting Cauchy's technique for obtaining bounds on the zeros of polynomials in one complex variable, the level surfaces of a real polynomial in $E^n$ are studied with respect to their intersection with certain curves, including all lines, passing through the origin. In addition, it is shown that the equipotential surface of any axisymmetric harmonic polynomial in $E^3$ is unbounded if and only if it is asymptotic to a finite union of cones each of which is parallel to a cone having the origin as its vertex. This paper extends results obtained by M. Marden and P. A. McCoy in 1976.
@article{PIM_1983_N_S_33_47_a11,
     author = {C. H. Heiberg},
     title = {Level {Sets} of {Polynomials} in {Several} {Real} {Variables}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {83 },
     publisher = {mathdoc},
     volume = {_N_S_33},
     number = {47},
     year = {1983},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1983_N_S_33_47_a11/}
}
TY  - JOUR
AU  - C. H. Heiberg
TI  - Level Sets of Polynomials in Several Real Variables
JO  - Publications de l'Institut Mathématique
PY  - 1983
SP  - 83 
VL  - _N_S_33
IS  - 47
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1983_N_S_33_47_a11/
LA  - en
ID  - PIM_1983_N_S_33_47_a11
ER  - 
%0 Journal Article
%A C. H. Heiberg
%T Level Sets of Polynomials in Several Real Variables
%J Publications de l'Institut Mathématique
%D 1983
%P 83 
%V _N_S_33
%N 47
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1983_N_S_33_47_a11/
%G en
%F PIM_1983_N_S_33_47_a11
C. H. Heiberg. Level Sets of Polynomials in Several Real Variables. Publications de l'Institut Mathématique, _N_S_33 (1983) no. 47, p. 83 . http://geodesic.mathdoc.fr/item/PIM_1983_N_S_33_47_a11/