An Error Estimate for Gauss-Jacobi Quadrature Formula with the Hermite Weight W(x)=exp(-x2)
Publications de l'Institut Mathématique, _N_S_33 (1983) no. 47, p. 17
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
The purpose of this paper is to give an estimate of the error in
approximating the integral $\int\limits_{-\infty}^\infty
f(x)\exp(-x^2)dx$ by the Gauss-Jacobi quadrature formula $Q_n(w;f)$,
assuming that $f$ is an entire function satisfying a certain growth
condition which depends on the Hermite weight function $w(x)= \exp(-x^2)$.
@article{PIM_1983_N_S_33_47_a1,
author = {Radwan Al-Jarrah},
title = {An {Error} {Estimate} for {Gauss-Jacobi} {Quadrature} {Formula} with the {Hermite} {Weight} {W(x)=exp(-x2)}},
journal = {Publications de l'Institut Math\'ematique},
pages = {17 },
year = {1983},
volume = {_N_S_33},
number = {47},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1983_N_S_33_47_a1/}
}
TY - JOUR AU - Radwan Al-Jarrah TI - An Error Estimate for Gauss-Jacobi Quadrature Formula with the Hermite Weight W(x)=exp(-x2) JO - Publications de l'Institut Mathématique PY - 1983 SP - 17 VL - _N_S_33 IS - 47 UR - http://geodesic.mathdoc.fr/item/PIM_1983_N_S_33_47_a1/ LA - en ID - PIM_1983_N_S_33_47_a1 ER -
Radwan Al-Jarrah. An Error Estimate for Gauss-Jacobi Quadrature Formula with the Hermite Weight W(x)=exp(-x2). Publications de l'Institut Mathématique, _N_S_33 (1983) no. 47, p. 17 . http://geodesic.mathdoc.fr/item/PIM_1983_N_S_33_47_a1/