A Unified Class of Polynomials
Publications de l'Institut Mathématique, _N_S_33 (1983) no. 47, p. 3 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In this paper we propose to study the polynomial set $\left\{f^{(\alpha)}_n\right\}(x)$ satisfying the functional relation $ T(\Delta_\alpha)\left\{f^{(\alpha)}_n(x)\right\}= f^{(\alpha+1)}_{n-1}(x), \qquad n=1,2,3,\dots, $ where $f(\alpha)_n(x)$ is the polynomial of degree $n$ in $x$ and $T$ is the operator of infinite order defined by $ T(\Delta_\alpha)= \sum_{k=0}^\infty h_k^{(\alpha)}\Delta_\alpha^{k+1}, \enskip h_0^{(\alpha)}\neq 0, $ in which $\Delta_\alpha \{f(\alpha)\}= f(\alpha+1)-f(\alpha)$.
@article{PIM_1983_N_S_33_47_a0,
     author = {Hukum C and and Agrawal},
     title = {A {Unified} {Class} of {Polynomials}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {3 },
     publisher = {mathdoc},
     volume = {_N_S_33},
     number = {47},
     year = {1983},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1983_N_S_33_47_a0/}
}
TY  - JOUR
AU  - Hukum C
AU  - and Agrawal
TI  - A Unified Class of Polynomials
JO  - Publications de l'Institut Mathématique
PY  - 1983
SP  - 3 
VL  - _N_S_33
IS  - 47
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1983_N_S_33_47_a0/
LA  - en
ID  - PIM_1983_N_S_33_47_a0
ER  - 
%0 Journal Article
%A Hukum C
%A and Agrawal
%T A Unified Class of Polynomials
%J Publications de l'Institut Mathématique
%D 1983
%P 3 
%V _N_S_33
%N 47
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1983_N_S_33_47_a0/
%G en
%F PIM_1983_N_S_33_47_a0
Hukum C; and Agrawal. A Unified Class of Polynomials. Publications de l'Institut Mathématique, _N_S_33 (1983) no. 47, p. 3 . http://geodesic.mathdoc.fr/item/PIM_1983_N_S_33_47_a0/