A Unified Class of Polynomials
Publications de l'Institut Mathématique, _N_S_33 (1983) no. 47, p. 3
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In this paper we propose to study the polynomial set
$\left\{f^{(\alpha)}_n\right\}(x)$ satisfying the functional relation
$
T(\Delta_\alpha)\left\{f^{(\alpha)}_n(x)\right\}= f^{(\alpha+1)}_{n-1}(x),
\qquad n=1,2,3,\dots,
$
where $f(\alpha)_n(x)$ is the polynomial of degree $n$ in $x$ and $T$ is
the operator of infinite order defined by
$
T(\Delta_\alpha)= \sum_{k=0}^\infty h_k^{(\alpha)}\Delta_\alpha^{k+1},
\enskip h_0^{(\alpha)}\neq 0,
$
in which $\Delta_\alpha \{f(\alpha)\}= f(\alpha+1)-f(\alpha)$.
@article{PIM_1983_N_S_33_47_a0,
author = {Hukum C and and Agrawal},
title = {A {Unified} {Class} of {Polynomials}},
journal = {Publications de l'Institut Math\'ematique},
pages = {3 },
year = {1983},
volume = {_N_S_33},
number = {47},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1983_N_S_33_47_a0/}
}
Hukum C; and Agrawal. A Unified Class of Polynomials. Publications de l'Institut Mathématique, _N_S_33 (1983) no. 47, p. 3 . http://geodesic.mathdoc.fr/item/PIM_1983_N_S_33_47_a0/