On the Functional Equation f phi f = f
Publications de l'Institut Mathématique, _N_S_29 (1981) no. 43, p. 61
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In this note we determine the general solution of the
equation $f\varphi f=f$, where $f:X\to Y$ is a given function and
$\varphi:Y\to X$ is an unkown function ($X$ and $Y$ are arbitrary
nonempty sets). The general solution of that equation is given by the
formula (4), where $\varphi_0:Y\to X$ is a particular solution, $k:Y\to X$
and $h:X\to X$ are arbitrary functions, $F:X^3\times Y^3\to X$ is
defined by (3).
@article{PIM_1981_N_S_29_43_a8,
author = {Valentina Harizanov},
title = {On the {Functional} {Equation} f phi f = f},
journal = {Publications de l'Institut Math\'ematique},
pages = {61 },
year = {1981},
volume = {_N_S_29},
number = {43},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1981_N_S_29_43_a8/}
}
Valentina Harizanov. On the Functional Equation f phi f = f. Publications de l'Institut Mathématique, _N_S_29 (1981) no. 43, p. 61 . http://geodesic.mathdoc.fr/item/PIM_1981_N_S_29_43_a8/