On the Functional Equation f phi f = f
Publications de l'Institut Mathématique, _N_S_29 (1981) no. 43, p. 61 Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Voir la notice de l'article

In this note we determine the general solution of the equation $f\varphi f=f$, where $f:X\to Y$ is a given function and $\varphi:Y\to X$ is an unkown function ($X$ and $Y$ are arbitrary nonempty sets). The general solution of that equation is given by the formula (4), where $\varphi_0:Y\to X$ is a particular solution, $k:Y\to X$ and $h:X\to X$ are arbitrary functions, $F:X^3\times Y^3\to X$ is defined by (3).
@article{PIM_1981_N_S_29_43_a8,
     author = {Valentina Harizanov},
     title = {On the {Functional} {Equation} f phi f = f},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {61 },
     year = {1981},
     volume = {_N_S_29},
     number = {43},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1981_N_S_29_43_a8/}
}
TY  - JOUR
AU  - Valentina Harizanov
TI  - On the Functional Equation f phi f = f
JO  - Publications de l'Institut Mathématique
PY  - 1981
SP  - 61 
VL  - _N_S_29
IS  - 43
UR  - http://geodesic.mathdoc.fr/item/PIM_1981_N_S_29_43_a8/
LA  - en
ID  - PIM_1981_N_S_29_43_a8
ER  - 
%0 Journal Article
%A Valentina Harizanov
%T On the Functional Equation f phi f = f
%J Publications de l'Institut Mathématique
%D 1981
%P 61 
%V _N_S_29
%N 43
%U http://geodesic.mathdoc.fr/item/PIM_1981_N_S_29_43_a8/
%G en
%F PIM_1981_N_S_29_43_a8
Valentina Harizanov. On the Functional Equation f phi f = f. Publications de l'Institut Mathématique, _N_S_29 (1981) no. 43, p. 61 . http://geodesic.mathdoc.fr/item/PIM_1981_N_S_29_43_a8/