A new Spectral Method for Determining the Number of Spanning Trees
Publications de l'Institut Mathématique, _N_S_29 (1981) no. 43, p. 49
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
As is known, the number of spanning tress of a regular graph
can be determined by the graph spectrum. In this paper we describe a
new variant of the spectral method for determining the number of
spanning trees, which enables to solve the problem for a class of
non-regular graphs.
@article{PIM_1981_N_S_29_43_a6,
author = {Drago\v{s} Cvetkovi\'c and Ivan Gutman},
title = {A new {Spectral} {Method} for {Determining} the {Number} of {Spanning} {Trees}},
journal = {Publications de l'Institut Math\'ematique},
pages = {49 },
publisher = {mathdoc},
volume = {_N_S_29},
number = {43},
year = {1981},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1981_N_S_29_43_a6/}
}
TY - JOUR AU - Dragoš Cvetković AU - Ivan Gutman TI - A new Spectral Method for Determining the Number of Spanning Trees JO - Publications de l'Institut Mathématique PY - 1981 SP - 49 VL - _N_S_29 IS - 43 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PIM_1981_N_S_29_43_a6/ LA - en ID - PIM_1981_N_S_29_43_a6 ER -
Dragoš Cvetković; Ivan Gutman. A new Spectral Method for Determining the Number of Spanning Trees. Publications de l'Institut Mathématique, _N_S_29 (1981) no. 43, p. 49 . http://geodesic.mathdoc.fr/item/PIM_1981_N_S_29_43_a6/