A new Spectral Method for Determining the Number of Spanning Trees
Publications de l'Institut Mathématique, _N_S_29 (1981) no. 43, p. 49 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

As is known, the number of spanning tress of a regular graph can be determined by the graph spectrum. In this paper we describe a new variant of the spectral method for determining the number of spanning trees, which enables to solve the problem for a class of non-regular graphs.
@article{PIM_1981_N_S_29_43_a6,
     author = {Drago\v{s} Cvetkovi\'c and Ivan Gutman},
     title = {A new {Spectral} {Method} for {Determining} the {Number} of {Spanning} {Trees}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {49 },
     publisher = {mathdoc},
     volume = {_N_S_29},
     number = {43},
     year = {1981},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1981_N_S_29_43_a6/}
}
TY  - JOUR
AU  - Dragoš Cvetković
AU  - Ivan Gutman
TI  - A new Spectral Method for Determining the Number of Spanning Trees
JO  - Publications de l'Institut Mathématique
PY  - 1981
SP  - 49 
VL  - _N_S_29
IS  - 43
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1981_N_S_29_43_a6/
LA  - en
ID  - PIM_1981_N_S_29_43_a6
ER  - 
%0 Journal Article
%A Dragoš Cvetković
%A Ivan Gutman
%T A new Spectral Method for Determining the Number of Spanning Trees
%J Publications de l'Institut Mathématique
%D 1981
%P 49 
%V _N_S_29
%N 43
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1981_N_S_29_43_a6/
%G en
%F PIM_1981_N_S_29_43_a6
Dragoš Cvetković; Ivan Gutman. A new Spectral Method for Determining the Number of Spanning Trees. Publications de l'Institut Mathématique, _N_S_29 (1981) no. 43, p. 49 . http://geodesic.mathdoc.fr/item/PIM_1981_N_S_29_43_a6/