A new Spectral Method for Determining the Number of Spanning Trees
Publications de l'Institut Mathématique, _N_S_29 (1981) no. 43, p. 49

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

As is known, the number of spanning tress of a regular graph can be determined by the graph spectrum. In this paper we describe a new variant of the spectral method for determining the number of spanning trees, which enables to solve the problem for a class of non-regular graphs.
@article{PIM_1981_N_S_29_43_a6,
     author = {Drago\v{s} Cvetkovi\'c and Ivan Gutman},
     title = {A new {Spectral} {Method} for {Determining} the {Number} of {Spanning} {Trees}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {49 },
     publisher = {mathdoc},
     volume = {_N_S_29},
     number = {43},
     year = {1981},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1981_N_S_29_43_a6/}
}
TY  - JOUR
AU  - Dragoš Cvetković
AU  - Ivan Gutman
TI  - A new Spectral Method for Determining the Number of Spanning Trees
JO  - Publications de l'Institut Mathématique
PY  - 1981
SP  - 49 
VL  - _N_S_29
IS  - 43
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1981_N_S_29_43_a6/
LA  - en
ID  - PIM_1981_N_S_29_43_a6
ER  - 
%0 Journal Article
%A Dragoš Cvetković
%A Ivan Gutman
%T A new Spectral Method for Determining the Number of Spanning Trees
%J Publications de l'Institut Mathématique
%D 1981
%P 49 
%V _N_S_29
%N 43
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1981_N_S_29_43_a6/
%G en
%F PIM_1981_N_S_29_43_a6
Dragoš Cvetković; Ivan Gutman. A new Spectral Method for Determining the Number of Spanning Trees. Publications de l'Institut Mathématique, _N_S_29 (1981) no. 43, p. 49 . http://geodesic.mathdoc.fr/item/PIM_1981_N_S_29_43_a6/