Measurability of Stochastic Process and Approximate Continuity of its Correlation Function
Publications de l'Institut Mathématique, _N_S_29 (1981) no. 43, p. 29
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
The oscillation functions of second order process and of its
correlation function are defined, and connections between properties of
these functions and of the process are considered. Specially,
relationships between mean square approximate continuity of the process
(and separate approximate continuity of its correlation function) and
measurability of that process are investigated.
@article{PIM_1981_N_S_29_43_a3,
author = {Jelena Bulatovi\'c},
title = {Measurability of {Stochastic} {Process} and {Approximate} {Continuity} of its {Correlation} {Function}},
journal = {Publications de l'Institut Math\'ematique},
pages = {29 },
year = {1981},
volume = {_N_S_29},
number = {43},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1981_N_S_29_43_a3/}
}
TY - JOUR AU - Jelena Bulatović TI - Measurability of Stochastic Process and Approximate Continuity of its Correlation Function JO - Publications de l'Institut Mathématique PY - 1981 SP - 29 VL - _N_S_29 IS - 43 UR - http://geodesic.mathdoc.fr/item/PIM_1981_N_S_29_43_a3/ LA - en ID - PIM_1981_N_S_29_43_a3 ER -
Jelena Bulatović. Measurability of Stochastic Process and Approximate Continuity of its Correlation Function. Publications de l'Institut Mathématique, _N_S_29 (1981) no. 43, p. 29 . http://geodesic.mathdoc.fr/item/PIM_1981_N_S_29_43_a3/