Inequivalent Regular Factors of Regular Graphs on 8 Vertices
Publications de l'Institut Mathématique, _N_S_29 (1981) no. 43, p. 171 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In this paper we shall find all nonisomorphic factorizations of all regular graphs on 8 vertices into two regular factors without the use of a computer (as a contrast to [1]). These factorizations are significant since they produce regular graphs with the least eigenvalue $-2$ which are neither line-graphs nor cocktail-party graphs but which are cospectral to line-graphs (cf [1]).
@article{PIM_1981_N_S_29_43_a19,
     author = {Zoran S. Radosavljevi\'c},
     title = {Inequivalent {Regular} {Factors} of {Regular} {Graphs} on 8 {Vertices}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {171 },
     publisher = {mathdoc},
     volume = {_N_S_29},
     number = {43},
     year = {1981},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1981_N_S_29_43_a19/}
}
TY  - JOUR
AU  - Zoran S. Radosavljević
TI  - Inequivalent Regular Factors of Regular Graphs on 8 Vertices
JO  - Publications de l'Institut Mathématique
PY  - 1981
SP  - 171 
VL  - _N_S_29
IS  - 43
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1981_N_S_29_43_a19/
LA  - en
ID  - PIM_1981_N_S_29_43_a19
ER  - 
%0 Journal Article
%A Zoran S. Radosavljević
%T Inequivalent Regular Factors of Regular Graphs on 8 Vertices
%J Publications de l'Institut Mathématique
%D 1981
%P 171 
%V _N_S_29
%N 43
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1981_N_S_29_43_a19/
%G en
%F PIM_1981_N_S_29_43_a19
Zoran S. Radosavljević. Inequivalent Regular Factors of Regular Graphs on 8 Vertices. Publications de l'Institut Mathématique, _N_S_29 (1981) no. 43, p. 171 . http://geodesic.mathdoc.fr/item/PIM_1981_N_S_29_43_a19/