Inequivalent Regular Factors of Regular Graphs on 8 Vertices
Publications de l'Institut Mathématique, _N_S_29 (1981) no. 43, p. 171
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In this paper we shall find all nonisomorphic factorizations
of all regular graphs on 8 vertices into two regular factors without
the use of a computer (as a contrast to [1]). These factorizations are
significant since they produce regular graphs with the least eigenvalue
$-2$ which are neither line-graphs nor cocktail-party graphs but which
are cospectral to line-graphs (cf [1]).
@article{PIM_1981_N_S_29_43_a19,
author = {Zoran S. Radosavljevi\'c},
title = {Inequivalent {Regular} {Factors} of {Regular} {Graphs} on 8 {Vertices}},
journal = {Publications de l'Institut Math\'ematique},
pages = {171 },
year = {1981},
volume = {_N_S_29},
number = {43},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1981_N_S_29_43_a19/}
}
Zoran S. Radosavljević. Inequivalent Regular Factors of Regular Graphs on 8 Vertices. Publications de l'Institut Mathématique, _N_S_29 (1981) no. 43, p. 171 . http://geodesic.mathdoc.fr/item/PIM_1981_N_S_29_43_a19/