Inequivalent Regular Factors of Regular Graphs on 8 Vertices
Publications de l'Institut Mathématique, _N_S_29 (1981) no. 43, p. 171
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In this paper we shall find all nonisomorphic factorizations
of all regular graphs on 8 vertices into two regular factors without
the use of a computer (as a contrast to [1]). These factorizations are
significant since they produce regular graphs with the least eigenvalue
$-2$ which are neither line-graphs nor cocktail-party graphs but which
are cospectral to line-graphs (cf [1]).
@article{PIM_1981_N_S_29_43_a19,
author = {Zoran S. Radosavljevi\'c},
title = {Inequivalent {Regular} {Factors} of {Regular} {Graphs} on 8 {Vertices}},
journal = {Publications de l'Institut Math\'ematique},
pages = {171 },
publisher = {mathdoc},
volume = {_N_S_29},
number = {43},
year = {1981},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1981_N_S_29_43_a19/}
}
TY - JOUR AU - Zoran S. Radosavljević TI - Inequivalent Regular Factors of Regular Graphs on 8 Vertices JO - Publications de l'Institut Mathématique PY - 1981 SP - 171 VL - _N_S_29 IS - 43 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PIM_1981_N_S_29_43_a19/ LA - en ID - PIM_1981_N_S_29_43_a19 ER -
Zoran S. Radosavljević. Inequivalent Regular Factors of Regular Graphs on 8 Vertices. Publications de l'Institut Mathématique, _N_S_29 (1981) no. 43, p. 171 . http://geodesic.mathdoc.fr/item/PIM_1981_N_S_29_43_a19/