M - Paranormal Operators
Publications de l'Institut Mathématique, _N_S_29 (1981) no. 43, p. 5
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
V. Istratescu has recently defined $M$-paranormal operators on a
Hilbert space $H$ as: An operator $T$ is called $M$-paranormal if for all
$x\in H$ with $\|x\|=1$,
$
\|T^2 x\|\geqq\frac1M\|Tx\|^2
$
We prove the following results:
\item{1.} $T$ is $M$-paranormal if and only if
$M^2T^*2T^2-2\lambda T^*T+\lambda^2 \geq 0$ for all $\lambda > 0$.
\item{2.} If a $M$-paranormal operator $T$ double commutes with a
hyponormal operator $S$, then the product $TS$ is $M$-paranormal.
\item{3.} If a paranormal operator $T$ doble commutes with a
$M$-hyponormal operator, then the product $TS$ is $M$-paranormal.
\item{4.} If $T$ is invertible $M$-paranormal, then $T^{-1}$ is also
$M$-paranormal.
\item{5.} If $Re W (T) \leq 0$, where $W (T)$ denotes the numerical
range of $T$, then $T$ is $M$-paranormal for $M \geq 8$.
\item{6.} If a $M$-paranormal partial isometry $T$ satisfies $\|T\|
\leq \frac1M$, then it is subnormal.
@article{PIM_1981_N_S_29_43_a0,
author = {S.C. Arora and Ramesh Kumar},
title = {M - {Paranormal} {Operators}},
journal = {Publications de l'Institut Math\'ematique},
pages = {5 },
year = {1981},
volume = {_N_S_29},
number = {43},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1981_N_S_29_43_a0/}
}
S.C. Arora; Ramesh Kumar. M - Paranormal Operators. Publications de l'Institut Mathématique, _N_S_29 (1981) no. 43, p. 5 . http://geodesic.mathdoc.fr/item/PIM_1981_N_S_29_43_a0/