On Fixed Point Theorems of Maia Type
Publications de l'Institut Mathématique, _N_S_28 (1980) no. 42, p. 179
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In this note we present some variants of the following
result of Maia [10]: Let $X$ be a non-empty set endowed in with two
metrics $\rho$, $\sigma$, and let $f$ be a mapping of $X$ into itself.
Suppose that $\rho(x,y)\leq\sigma(x,y)$ in $X$, $X$ is a complete space
and $f$ is continuous with respect to $\rho$, and $\sigma(fx,fy)\leq
k\cdot\sigma(x,y)$ for all $x$, $y$ in $X$, where $0 \leq k 1$. Then,
$f$ has a unique fixed point in $X$.
@article{PIM_1980_N_S_28_42_a22,
author = {Bogdan Rzepecki},
title = {On {Fixed} {Point} {Theorems} of {Maia} {Type}},
journal = {Publications de l'Institut Math\'ematique},
pages = {179 },
year = {1980},
volume = {_N_S_28},
number = {42},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1980_N_S_28_42_a22/}
}
Bogdan Rzepecki. On Fixed Point Theorems of Maia Type. Publications de l'Institut Mathématique, _N_S_28 (1980) no. 42, p. 179 . http://geodesic.mathdoc.fr/item/PIM_1980_N_S_28_42_a22/