On Fixed Point Theorems of Maia Type
Publications de l'Institut Mathématique, _N_S_28 (1980) no. 42, p. 179 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In this note we present some variants of the following result of Maia [10]: Let $X$ be a non-empty set endowed in with two metrics $\rho$, $\sigma$, and let $f$ be a mapping of $X$ into itself. Suppose that $\rho(x,y)\leq\sigma(x,y)$ in $X$, $X$ is a complete space and $f$ is continuous with respect to $\rho$, and $\sigma(fx,fy)\leq k\cdot\sigma(x,y)$ for all $x$, $y$ in $X$, where $0 \leq k 1$. Then, $f$ has a unique fixed point in $X$.
@article{PIM_1980_N_S_28_42_a22,
     author = {Bogdan Rzepecki},
     title = {On {Fixed} {Point} {Theorems} of {Maia} {Type}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {179 },
     publisher = {mathdoc},
     volume = {_N_S_28},
     number = {42},
     year = {1980},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1980_N_S_28_42_a22/}
}
TY  - JOUR
AU  - Bogdan Rzepecki
TI  - On Fixed Point Theorems of Maia Type
JO  - Publications de l'Institut Mathématique
PY  - 1980
SP  - 179 
VL  - _N_S_28
IS  - 42
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1980_N_S_28_42_a22/
LA  - en
ID  - PIM_1980_N_S_28_42_a22
ER  - 
%0 Journal Article
%A Bogdan Rzepecki
%T On Fixed Point Theorems of Maia Type
%J Publications de l'Institut Mathématique
%D 1980
%P 179 
%V _N_S_28
%N 42
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1980_N_S_28_42_a22/
%G en
%F PIM_1980_N_S_28_42_a22
Bogdan Rzepecki. On Fixed Point Theorems of Maia Type. Publications de l'Institut Mathématique, _N_S_28 (1980) no. 42, p. 179 . http://geodesic.mathdoc.fr/item/PIM_1980_N_S_28_42_a22/