Rotation-Free Solutions With Positive Infimum Of The Equation Δu = Pu In A Neighbourhood Of A Singularity Of The Density P
Publications de l'Institut Mathématique, _N_S_13 (1972) no. 27, p. 117 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

@article{PIM_1972_N_S_13_27_a16,
     author = {J. L. Schiff},
     title = {Rotation-Free {Solutions} {With} {Positive} {Infimum} {Of} {The} {Equation} {\ensuremath{\Delta}u} = {Pu} {In} {A} {Neighbourhood} {Of} {A} {Singularity} {Of} {The} {Density} {P}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {117 },
     publisher = {mathdoc},
     volume = {_N_S_13},
     number = {27},
     year = {1972},
     url = {http://geodesic.mathdoc.fr/item/PIM_1972_N_S_13_27_a16/}
}
TY  - JOUR
AU  - J. L. Schiff
TI  - Rotation-Free Solutions With Positive Infimum Of The Equation Δu = Pu In A Neighbourhood Of A Singularity Of The Density P
JO  - Publications de l'Institut Mathématique
PY  - 1972
SP  - 117 
VL  - _N_S_13
IS  - 27
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1972_N_S_13_27_a16/
ID  - PIM_1972_N_S_13_27_a16
ER  - 
%0 Journal Article
%A J. L. Schiff
%T Rotation-Free Solutions With Positive Infimum Of The Equation Δu = Pu In A Neighbourhood Of A Singularity Of The Density P
%J Publications de l'Institut Mathématique
%D 1972
%P 117 
%V _N_S_13
%N 27
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1972_N_S_13_27_a16/
%F PIM_1972_N_S_13_27_a16
J. L. Schiff. Rotation-Free Solutions With Positive Infimum Of The Equation Δu = Pu In A Neighbourhood Of A Singularity Of The Density P. Publications de l'Institut Mathématique, _N_S_13 (1972) no. 27, p. 117 . http://geodesic.mathdoc.fr/item/PIM_1972_N_S_13_27_a16/