On $\sigma$-local formations of finite groups with bounded $\mathfrak{H}_\sigma$-defect
Problemy fiziki, matematiki i tehniki, no. 1 (2025), pp. 87-101
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $\mathfrak{F}$ and $\mathfrak{H}$ be some $\sigma$-local formations of finite groups. Then $\mathfrak{F}/_\sigma\ \mathfrak{H}\cap\mathfrak{F}$ denote the lattice of all $\sigma$-local formations $\mathfrak{X}$ such that
$\mathfrak{H}\cap\mathfrak{F}\subseteq\mathfrak{X}\subseteq\mathfrak{F}$. The length of the lattice $\mathfrak{F}/_\sigma\ \mathfrak{H}\cap\mathfrak{F}$ is called a $\mathfrak{H}_\sigma$-defect of the $\sigma$-local formation $\mathfrak{F}$.
In particular, if $\mathfrak{H}$ is the formation of all identity groups, then the $\mathfrak{H}_\sigma$-defect of a $\sigma$-local formation $\mathfrak{F}$ is called a $l_\sigma$-length of the formation $\mathfrak{F}$.
The general properties of $\mathfrak{H}_\sigma$-defect of $\sigma$-local formations
are studied, the description of minimal $\sigma$-local non-$\mathfrak{H}$-formations for an arbitrary $\sigma$-nilpotent $\sigma$-local formation $\mathfrak{H}$ is obtained, the description of the lattice structure of
$\sigma$-local formations of $\mathfrak{H}_\sigma$-defect $1$ is given. The descriptions of the lattice structure of reducible $\sigma$-local formations of finite $\mathfrak{H}_\sigma$-defect, as well as the lattice structure of reducible $\sigma$-local formations of finite $l_\sigma$-length are obtained.
Keywords:
finite group, $\sigma$-local formation, critical $\sigma$-local formation, $\mathfrak{H}_\sigma$-defect of a $\sigma$-local formation, $l_\sigma$-length of a $\sigma$-local formation.
@article{PFMT_2025_1_a13,
author = {I. N. Safonova and V. V. Skrundz},
title = {On $\sigma$-local formations of finite groups with bounded $\mathfrak{H}_\sigma$-defect},
journal = {Problemy fiziki, matematiki i tehniki},
pages = {87--101},
year = {2025},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PFMT_2025_1_a13/}
}
TY - JOUR
AU - I. N. Safonova
AU - V. V. Skrundz
TI - On $\sigma$-local formations of finite groups with bounded $\mathfrak{H}_\sigma$-defect
JO - Problemy fiziki, matematiki i tehniki
PY - 2025
SP - 87
EP - 101
IS - 1
UR - http://geodesic.mathdoc.fr/item/PFMT_2025_1_a13/
LA - ru
ID - PFMT_2025_1_a13
ER -
I. N. Safonova; V. V. Skrundz. On $\sigma$-local formations of finite groups with bounded $\mathfrak{H}_\sigma$-defect. Problemy fiziki, matematiki i tehniki, no. 1 (2025), pp. 87-101. http://geodesic.mathdoc.fr/item/PFMT_2025_1_a13/