Equivalent structural characteristic of a function from a Lebesgue space
Problemy fiziki, matematiki i tehniki, no. 1 (2025), pp. 67-69.

Voir la notice de l'article provenant de la source Math-Net.Ru

The equivalence of the iterated modulus of smoothness and the Petre $K$-functional is proved.
Keywords: iterated modulus of smoothness, $K$-functional.
@article{PFMT_2025_1_a10,
     author = {G. N. Kazimirov and V. V. Burakovskiy},
     title = {Equivalent structural characteristic of a function from a {Lebesgue} space},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {67--69},
     publisher = {mathdoc},
     number = {1},
     year = {2025},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2025_1_a10/}
}
TY  - JOUR
AU  - G. N. Kazimirov
AU  - V. V. Burakovskiy
TI  - Equivalent structural characteristic of a function from a Lebesgue space
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2025
SP  - 67
EP  - 69
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2025_1_a10/
LA  - ru
ID  - PFMT_2025_1_a10
ER  - 
%0 Journal Article
%A G. N. Kazimirov
%A V. V. Burakovskiy
%T Equivalent structural characteristic of a function from a Lebesgue space
%J Problemy fiziki, matematiki i tehniki
%D 2025
%P 67-69
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2025_1_a10/
%G ru
%F PFMT_2025_1_a10
G. N. Kazimirov; V. V. Burakovskiy. Equivalent structural characteristic of a function from a Lebesgue space. Problemy fiziki, matematiki i tehniki, no. 1 (2025), pp. 67-69. http://geodesic.mathdoc.fr/item/PFMT_2025_1_a10/