Characterization of some classes of finite groups
Problemy fiziki, matematiki i tehniki, no. 4 (2024), pp. 57-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

Throughout the paper, all groups are finite and $G$ always denotes a finite group; $\mathbb{P}$ is the set of all primes and $\sigma=\{\sigma_i\mid i\in I\}$ is an arbitrary partition of $\mathbb{P}$. By a $\sigma$-property of a group we mean any property of it that depends on $\sigma$ and that does not imply any restrictions on $\sigma$. In this paper, further applications of the theory of $\sigma$-properties of a group in the study of generalized $T$-groups and other classes of finite groups are analyzed.
Keywords: finite group, $\sigma$-property of a group, $\sigma$-subnormal subgroup, $\sigma$-permutable subgroup
Mots-clés : $P\sigma T$-group.
@article{PFMT_2024_4_a9,
     author = {V. G. Safonov and A. N. Skiba},
     title = {Characterization of some classes of finite groups},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {57--64},
     publisher = {mathdoc},
     number = {4},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2024_4_a9/}
}
TY  - JOUR
AU  - V. G. Safonov
AU  - A. N. Skiba
TI  - Characterization of some classes of finite groups
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2024
SP  - 57
EP  - 64
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2024_4_a9/
LA  - ru
ID  - PFMT_2024_4_a9
ER  - 
%0 Journal Article
%A V. G. Safonov
%A A. N. Skiba
%T Characterization of some classes of finite groups
%J Problemy fiziki, matematiki i tehniki
%D 2024
%P 57-64
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2024_4_a9/
%G ru
%F PFMT_2024_4_a9
V. G. Safonov; A. N. Skiba. Characterization of some classes of finite groups. Problemy fiziki, matematiki i tehniki, no. 4 (2024), pp. 57-64. http://geodesic.mathdoc.fr/item/PFMT_2024_4_a9/

[1] A.N. Skiba, “On some results in the theory of finite partially soluble groups”, Commun. Math. Stat., 4:3 (2016), 281-309 | DOI | MR | Zbl

[2] A.N. Skiba, “On $\sigma$-properties of finite groups I”, Problems of Physics, Mathematics and Technics, 2014, no. 4 (21), 89-96 | MR | Zbl

[3] A.N. Skiba, “On $\sigma$-subnormal and $\sigma$-permutable subgroups of finite groups”, J. Algebra, 436 (2015), 1-16 | DOI | MR | Zbl

[4] X.-F. Zhang, W. Guo, I.N. Safonova, A.N. Skiba, “A Robinson description of finite P$\sigma$T-groups”, J. Algebra, 631 (2023), 218-235 | DOI | MR | Zbl

[5] H. Li, A.-M. Liu, I.N. Safonova, A.N. Skiba, “Characterizations of some classes of finite $\sigma$-soluble P$\sigma$T-groups”, Comm. Algebra, 52:1 (2024), 128-139 | DOI | MR | Zbl

[6] A.N. Skiba, “Some characterizations of finite $\sigma$-soluble P$\sigma$T-groups”, J. Algebra, 495 (2018), 114-129 | DOI | MR | Zbl

[7] W. Guo, A.N. Skiba, “On $\sigma$-supersoluble groups and one generalization of CLT-groups”, J. Algebra, 512 (2018), 92-108 | DOI | MR | Zbl

[8] H. Wielandt, “Eine Verallgemenerung der invarianten Untergruppen”, Math. Z., 45 (1939), 200-244 | DOI | MR

[9] O.H. Kegel, “Sylow-Gruppen and Subnormalteilerendlicher Gruppen”, Math. Z., 78 (1962), 205-221 | DOI | MR | Zbl

[10] W.E. Deskins, “On quasinormal subgroups of finite groups”, Math. Z., 82 (1963), 125-132 | DOI | MR | Zbl

[11] A. Ballester-Bolinches, R. Esteban-Romero, M. Asaad, Products of Finite Groups, Walter de Gruyter, Berlin–New York, 2010 | MR | Zbl

[12] R.K. Agrawal, “Finite groups whose subnormal subgroups permute with all Sylow subgroups”, Proc. Amer. Math. Soc., 47 (1975), 77-83 | DOI | MR | Zbl

[13] D.J.S. Robinson, “The structure of finite groups in which permutability is a transitive relation”, J. Austral. Math. Soc., 70 (2001), 143-159 | DOI | MR | Zbl

[14] D. Gorenstein, Finite simple groups. An introduction to their Classification, Plenum Press, New York–London, 1982 | MR | Zbl

[15] V.G. Safonov, A.N. Skiba, Novye reshetochnye mntody issledovaniya grupp, Preprint, 2024

[16] X. Zhu, C. Cao, W. Guo, “Finite $\sigma$-soluble groups in which $\sigma$-permutability is a transitive relation”, Journal of Algebra and Its Applications, 18:4 (2019), 1950064, 11 pp. | DOI | MR | Zbl

[17] N.M. Adarchenko, “A new characterization of finite $\sigma$-soluble P$\sigma$T-groups”, Algebra and Discrete Math., 29:1 (2020), 33-41 | DOI | MR | Zbl

[18] A.N. Skiba, “On sublattices of the subgroup lattice defined by formation Fitting sets”, J. Algebra, 550 (2020), 69-85 | DOI | MR | Zbl

[19] A.-M. Liu, W. Guo, I.N. Safonova, A.N. Skiba, “$G$-covering subgroup systems for some classes of $\sigma$-soluble groups”, J. Algebra, 585 (2021), 280-293 | DOI | MR | Zbl

[20] A. Ballester-Bolinches, M.C. Pedraza-Aguilera, V. Pérez-Calabuing, “On two classes of generalized T-groups”, Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas, 117 (2023), 105 | DOI | MR | Zbl

[21] P. Hall, “On the system normalizers of a soluble Group”, Proc. London Math. Soc., 43 (1937), 307-328 | MR

[22] A.N. Skiba, “On weakly S-permutable subgroups of finite groups”, J. Algebra, 315:1 (2007), 192-209 | DOI | MR | Zbl

[23] W. Guo, A.N. Skiba, “Finite groups with given S-embedded and N-embedded subgroups”, J. Algebra, 321 (2009), 2843-2860 | DOI | MR | Zbl

[24] Zhigang Wang, A.-Ming Liu, V.G. Safonov, A.N. Skiba, “On $\sigma$-permutable subgroups of $\sigma$-soluble finite groups”, Journal of Group Theory, 2024 | DOI | MR

[25] V.N. Semenchuk, “Konechnye gruppy s sistemoi minimalnykh ne-$\mathfrak{F}$-grupp”, Struktura podgrupp konechnykh grupp, Nauka i tekhnika, Minsk, 1981, 138–149

[26] V.S. Monakhov, V.N. Knyagina, “O konechnykh gruppakh s nekotorymi subnormalnymi podgruppy Shmidta”, Sibirskii matematicheskii zhurnal, 45:6 (2004), 1316-1322 | Zbl

[27] A.E. Spencer, “Maximal nonnormal chains in finite groups”, Pacific J. Math., 27:1 (1968), 167-173 | DOI | MR | Zbl