Open one-line Jackson networks with exponential constrains on waiting times modification by product form of the stationary distribution
Problemy fiziki, matematiki i tehniki, no. 4 (2024), pp. 53-56.

Voir la notice de l'article provenant de la source Math-Net.Ru

One-line exponential queueing network, in which the waiting time by customers in the nodes is random variable whose conditional distribution (on fixed customers qualities) is exponential, was considered. The customers served in the nodes and the non-served customers move in the network according to a different routing matrices. A network modification with exponential bounded waiting times and product form stationary distribution is presented. To achieve this goal additional compensative flows of moving in the network control signals are introduced.
Keywords: qoueueing network, stationary distribution, product form, waiting time, sojourn time, exponential restricts, compensative flows, modificatory network.
@article{PFMT_2024_4_a8,
     author = {Yu. V. Malinkovskii},
     title = {Open one-line {Jackson} networks with exponential constrains on waiting times modification by product form of the stationary distribution},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {53--56},
     publisher = {mathdoc},
     number = {4},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2024_4_a8/}
}
TY  - JOUR
AU  - Yu. V. Malinkovskii
TI  - Open one-line Jackson networks with exponential constrains on waiting times modification by product form of the stationary distribution
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2024
SP  - 53
EP  - 56
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2024_4_a8/
LA  - ru
ID  - PFMT_2024_4_a8
ER  - 
%0 Journal Article
%A Yu. V. Malinkovskii
%T Open one-line Jackson networks with exponential constrains on waiting times modification by product form of the stationary distribution
%J Problemy fiziki, matematiki i tehniki
%D 2024
%P 53-56
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2024_4_a8/
%G ru
%F PFMT_2024_4_a8
Yu. V. Malinkovskii. Open one-line Jackson networks with exponential constrains on waiting times modification by product form of the stationary distribution. Problemy fiziki, matematiki i tehniki, no. 4 (2024), pp. 53-56. http://geodesic.mathdoc.fr/item/PFMT_2024_4_a8/

[1] Yu.V. Malinkovskii, “Seti massovogo obsluzhivaniya s obkhodami uzlov zayavkami”, Avtomatika i telemekhanika, 1991, no. 2, 102-110

[2] Yu.V. Malinkovskii, “Seti s simmetrichnymi rezervnymi kanalami”, Izvestiya AN SSSR. Tekhnicheskaya kibernetika, 1986, no. 4, 69-77

[3] E.A. Kovalev, Yu.V. Malinkovskii, “Seti massovogo obsluzhivaniya s rezervnymi priborami”, Avtomatika i vychislitelnaya tekhnika, 1987, no. 2, 64-70

[4] E.A. Kovalev, “Seti massovogo obsluzhivaniya s ogranichennym vremenem ozhidaniya v ocheredyakh”, Avtomatika i vychislitelnaya tekhnika, 1985, no. 2, 50-55

[5] Yu.V. Malinkovsky, “Jackson networks with single-line nodes and limited sojourn or waiting times”, Automation and remote control, 76:4 (2015), 67-79 | MR | Zbl

[6] Yu.V. Malinkovsky, “Stationary probability distribution for states of G-networks with constrained sojourn waiting time”, Automation and remote control, 564:4 (2017), 155-167 | MR

[7] Yu.V. Malinkovskii, V.A. Nemilostivaya, “Zamknutaya set Gordona - Nyuella s odnolineinymi polyusami i eksponentsialno ogranichennym vremenem ozhidaniya zaprosov”, Informatika, 20:4 (2023), 48-55 | Zbl

[8] V.A. Nemilostivaya, Yu.V. Malinkovskii, “Seti Dzheksona s odnolineinymi stantsiyami i eksponentsialnymi ogranicheniyami na vremena ozhidaniya trebovanii”, Izvestiya Gomelskogo gosudarstvennogo universiteta imeni F. Skoriny, 2023, no. 6 (141), 92-98

[9] I.I. Gikhman, A.V. Skorokhod, Teoriya sluchainykh protsessov, v. II, Nauka, M., 1972, 640 pp.

[10] Yu.V. Malinkovskii, S.A. Evmenenko, “Invariantnost statsionarnogo raspredeleniya otkrytoi seti obsluzhivaniya s eksponentsialnym ogranicheniem na vremya prebyvaniya”, Avtomatika i telemekhanika, 2024, no. 9, 93-100