On the $p$-length of a product of two $B$-groups
Problemy fiziki, matematiki i tehniki, no. 4 (2024), pp. 48-52.

Voir la notice de l'article provenant de la source Math-Net.Ru

A finite non-nilpotent group is called a $B$-group if every proper subgroup of its quotient group by Frattini subgroup is primary. The $p$-length $l_p(G)$ of a finite $p$-soluble group, which is the product of two $B$-subgroups, is studied. It has been proved that $l_p(G)\leqslant 1$ if $p$ does not divide the index of one of the $B$-subgroups.
Keywords: finite group, $p$-length, product of subgroups.
Mots-clés : $B$-group, $p$-soluble group
@article{PFMT_2024_4_a7,
     author = {V. N. Kniahina},
     title = {On the $p$-length of a product of two $B$-groups},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {48--52},
     publisher = {mathdoc},
     number = {4},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2024_4_a7/}
}
TY  - JOUR
AU  - V. N. Kniahina
TI  - On the $p$-length of a product of two $B$-groups
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2024
SP  - 48
EP  - 52
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2024_4_a7/
LA  - ru
ID  - PFMT_2024_4_a7
ER  - 
%0 Journal Article
%A V. N. Kniahina
%T On the $p$-length of a product of two $B$-groups
%J Problemy fiziki, matematiki i tehniki
%D 2024
%P 48-52
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2024_4_a7/
%G ru
%F PFMT_2024_4_a7
V. N. Kniahina. On the $p$-length of a product of two $B$-groups. Problemy fiziki, matematiki i tehniki, no. 4 (2024), pp. 48-52. http://geodesic.mathdoc.fr/item/PFMT_2024_4_a7/

[1] V.N. Knyagina, “O proizvedenii B-gruppy i primarnoi gruppy”, Problemy fiziki, matematiki i tekhniki, 2017, no. 3 (32), 52-57

[2] V.N. Knyagina, V.S. Monakhov, “O p-dline proizvedeniya dvukh grupp Shmidta”, Sibirskii matematicheskii zhurnal, 45:2 (2004), 329-333 | Zbl

[3] B. Huppert, Endliche Gruppen I, Berlin–Heidelberg–New York, 1967 | MR | Zbl

[4] V.S. Monakhov, Vvedenie v teoriyu konechnykh grupp i ikh klassov, Vysheishaya shkola, Minsk, 2006

[5] V.S. Monakhov, “Podgruppy Shmidta, ikh suschestvovanie i nekotorye prilozheniya”, Trudy Ukr. matem. kongressa 2001, sektsiya No 1, Institut matematiki NAU, Kiev, 2002, 81-90

[6] V.S. Monakhov, “O chastichnoi sverkhrazreshimosti konechnoi faktorizuemoi gruppy”, Doklady NAN Belarusi, 45:3 (2001), 32-36

[7] Ya.G. Berkovich, “O razreshimykh gruppakh konechnogo poryadka”, Matematicheskii sbornik, 74:1 (1967), 75-92 | Zbl

[8] V.S. Monakhov, “O proizvedenii dvukh grupp, odna iz kotorykh soderzhit tsiklicheskuyu podgruppu indeksa $\leqslant 2$”, Matematicheskie zametki, 16:2 (1974), 285-295

[9] V.S. Monakhov, “Proizvedenie sverkhrazreshimykh grupp Shmidta”, Izvestiya Gomelskogo gosudarstvennogo universiteta imeni F. Skoriny, 1999, no. 1, 41-46