Energy and polarisation properties of vector Gaussian light beams with simple astigmatism
Problemy fiziki, matematiki i tehniki, no. 4 (2024), pp. 19-24.

Voir la notice de l'article provenant de la source Math-Net.Ru

The polarization and energy properties of vector light beams with simple astigmatism are investigated analytically. Graphical modelling of polarization ellipses, intensity and transverse energy fluxes of the investigated vector astigmatic light beams is carried out.
Keywords: astigmatic beams, Gaussian beams, polarization, transverse energy fluxes.
@article{PFMT_2024_4_a2,
     author = {S. S. Girgel},
     title = {Energy and polarisation properties of vector {Gaussian} light beams with simple astigmatism},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {19--24},
     publisher = {mathdoc},
     number = {4},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2024_4_a2/}
}
TY  - JOUR
AU  - S. S. Girgel
TI  - Energy and polarisation properties of vector Gaussian light beams with simple astigmatism
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2024
SP  - 19
EP  - 24
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2024_4_a2/
LA  - ru
ID  - PFMT_2024_4_a2
ER  - 
%0 Journal Article
%A S. S. Girgel
%T Energy and polarisation properties of vector Gaussian light beams with simple astigmatism
%J Problemy fiziki, matematiki i tehniki
%D 2024
%P 19-24
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2024_4_a2/
%G ru
%F PFMT_2024_4_a2
S. S. Girgel. Energy and polarisation properties of vector Gaussian light beams with simple astigmatism. Problemy fiziki, matematiki i tehniki, no. 4 (2024), pp. 19-24. http://geodesic.mathdoc.fr/item/PFMT_2024_4_a2/

[1] A.M. Goncharenko, Gaussovy puchki sveta, Nauka i tekhnika, Minsk, 1977, 142 pp.

[2] A.P. Kiselev, “Lokalizovannye svetovye volny: paraksialnye i tochnye resheniya volnovogo uravneniya (obzor)”, Optika i spektroskopiya, 102:4 (2007), 661-681

[3] E.G Abramochkin, V.G. Volostnikov, Sovremennaya optika gaussovykh puchkov, FIZMATLIT, M., 2010, 184 pp.

[4] Yu.A. Ananev, Opticheskie rezonatory i lazernye puchki, Nauka, M., 1990, 264 pp.

[5] E. Heyman, L.B. Felsen, “Gaussian beam and pulsed beam dynamics: complex-source and complex-spectrum formulations within and beyond paraxial asymptotics”, J. Opt. Soc. Am. A, 18 (2001), 1588-1611 | DOI

[6] A.B. Plachenov et al., “Paraxial Gaussian modes with simple astigmatic phases and nonpolynomial amplitudes”, Proc. of the Inter. Conf. DAYS on DIFFRACTION, 2017, 264-269

[7] M.A. Bandres, J.C. Gutierres-Vega, “Cartesian beams”, Optics Letters, 32:23 (2007), 3459-3461 | DOI

[8] M.V. Berry, “Optical currents”, Journal of Optics A: Pure and Applied Optics, 11:9 (2009), 094001 | DOI

[9] A. Bekshaev, K. Bliokh, M. Soskin, “Internal flows and energy circulation in light beams”, Journal of Optics, 13:5 (2011), 053001 | DOI

[10] S.S. Girgel, “Polyarizatsionnye i energeticheskie svoistva vektornykh paraksialnykh gaussovykh svetovykh puchkov”, Problemy fiziki, matematiki i tekhniki, 2012, no. 3 (12), 19-23

[11] S.S. Girgel, “Svoistva vektornykh paraksialnykh svetovykh puchkov. I. Odnorodnaya polyarizatsiya”, Problemy fiziki, matematiki i tekhniki, 2011, no. 1 (6), 20-24

[12] S.S. Girgel, “Svoistva vektornykh paraksialnykh svetovykh puchkov. II. Neodnorodnaya polyarizatsiya”, Problemy fiziki, matematiki i tekhniki, 2012, no. 1 (10), 11-14

[13] S.S. Girgel, “Polyarizatsionnye i energeticheskie svoistva vektornykh gaussovopodobnykh puchkov. I. Odnorodnaya polyarizatsiya”, Problemy fiziki, matematiki i tekhniki, 2016, no. 1 (26), 17-21

[14] S.S. Girgel, “Polyarizatsionnye i energeticheskie svoistva vektornykh gaussovopodobnykh puchkov. II. Neodnorodnaya polyarizatsiya”, Problemy fiziki, matematiki i tekhniki, 2017, no. 4 (33), 7-10

[15] S.S. Girgel, “Vektornye tsirkulyarnye paraksialnye puchki Kummera - Gaussa. Polyarizatsiya i energeticheskie svoistva”, Problemy, fiziki, matematiki i tekhniki, 2023, no. 3 (56), 7-11

[16] S.S. Girgel, “Energeticheskie kharakteristiki vektornykh tsirkulyarnykh puchkov Kummera konechnoi moschnosti. II. Neodnorodnaya polyarizatsiya”, Problemy fiziki, matematiki i tekhniki, 2023, no. 1 (54), 20-24