Polyadic analogues of normal subgroups in polyadic groups of special form.~I
Problemy fiziki, matematiki i tehniki, no. 3 (2024), pp. 54-58.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article studies the normal subgroups in polyadic groups of special form, that is in polyadic groups with $l$-ary operation $\eta_{s,\sigma,k}$, that is called polyadic operation of special form and is defined on Cartesian power of $A^k$ $n$-ary group $\langle A,\eta\rangle$ by substitution $\sigma\in\mathbf{S}_k$ which order divides $l-1$ and $n$-ary operation $\eta$.
Keywords: polyadic operation, semiinvariant $l$-ary subgroups, $n$-semiinvariant $l$-ary subgroups.
@article{PFMT_2024_3_a9,
     author = {A. M. Gal'mak},
     title = {Polyadic analogues of normal subgroups in polyadic groups of special {form.~I}},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {54--58},
     publisher = {mathdoc},
     number = {3},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2024_3_a9/}
}
TY  - JOUR
AU  - A. M. Gal'mak
TI  - Polyadic analogues of normal subgroups in polyadic groups of special form.~I
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2024
SP  - 54
EP  - 58
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2024_3_a9/
LA  - ru
ID  - PFMT_2024_3_a9
ER  - 
%0 Journal Article
%A A. M. Gal'mak
%T Polyadic analogues of normal subgroups in polyadic groups of special form.~I
%J Problemy fiziki, matematiki i tehniki
%D 2024
%P 54-58
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2024_3_a9/
%G ru
%F PFMT_2024_3_a9
A. M. Gal'mak. Polyadic analogues of normal subgroups in polyadic groups of special form.~I. Problemy fiziki, matematiki i tehniki, no. 3 (2024), pp. 54-58. http://geodesic.mathdoc.fr/item/PFMT_2024_3_a9/

[1] W. Dörnte, “Untersuchungen über einen verallgemeinerten Gruppenbegrieff”, Math. Z., 29 (1928), 1–19 | DOI | MR

[2] S.A. Rusakov, Algebraicheskie n-arnye sistemy, Navuka i tekhnika, Minsk, 1992, 245 pp.

[3] A.M. Galmak, Kongruentsii poliadicheskikh grupp, Belaruskaya navuka, Minsk, 1999, 182 pp.

[4] A.M. Galmak, n-Arnye gruppy, v. 1, GGU im. F. Skoriny, Gomel, 2003, 202 pp.

[5] A.M. Galmak, “O razreshimosti uravnenii v $\langle A^k,\eta_{s,\sigma,k}\rangle$”, Vesnik MDU im. A.A. Kulyashova, 2018, no. 1 (51), 4–10 | MR

[6] A.M. Galmak, Poliadicheskie operatsii i obobschennye matritsy, MGUP, Mogilev, 2015, 295 pp.