Polyadic analogues of normal subgroups in polyadic groups of special form. I
Problemy fiziki, matematiki i tehniki, no. 3 (2024), pp. 54-58
Cet article a éte moissonné depuis la source Math-Net.Ru
The article studies the normal subgroups in polyadic groups of special form, that is in polyadic groups with $l$-ary operation $\eta_{s,\sigma,k}$, that is called polyadic operation of special form and is defined on Cartesian power of $A^k$ $n$-ary group $\langle A,\eta\rangle$ by substitution $\sigma\in\mathbf{S}_k$ which order divides $l-1$ and $n$-ary operation $\eta$.
Keywords:
polyadic operation, semiinvariant $l$-ary subgroups, $n$-semiinvariant $l$-ary subgroups.
@article{PFMT_2024_3_a9,
author = {A. M. Gal'mak},
title = {Polyadic analogues of normal subgroups in polyadic groups of special {form.~I}},
journal = {Problemy fiziki, matematiki i tehniki},
pages = {54--58},
year = {2024},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PFMT_2024_3_a9/}
}
A. M. Gal'mak. Polyadic analogues of normal subgroups in polyadic groups of special form. I. Problemy fiziki, matematiki i tehniki, no. 3 (2024), pp. 54-58. http://geodesic.mathdoc.fr/item/PFMT_2024_3_a9/
[1] W. Dörnte, “Untersuchungen über einen verallgemeinerten Gruppenbegrieff”, Math. Z., 29 (1928), 1–19 | DOI | MR
[2] S.A. Rusakov, Algebraicheskie n-arnye sistemy, Navuka i tekhnika, Minsk, 1992, 245 pp.
[3] A.M. Galmak, Kongruentsii poliadicheskikh grupp, Belaruskaya navuka, Minsk, 1999, 182 pp.
[4] A.M. Galmak, n-Arnye gruppy, v. 1, GGU im. F. Skoriny, Gomel, 2003, 202 pp.
[5] A.M. Galmak, “O razreshimosti uravnenii v $\langle A^k,\eta_{s,\sigma,k}\rangle$”, Vesnik MDU im. A.A. Kulyashova, 2018, no. 1 (51), 4–10 | MR
[6] A.M. Galmak, Poliadicheskie operatsii i obobschennye matritsy, MGUP, Mogilev, 2015, 295 pp.