Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2024_3_a5, author = {A. L. Samofalov and I. A. Fanyaev and P. V. Somov and I. V. Semchenko and A. A. Kovalev and Hui Chu}, title = {Designing a phase manipulator using metamaterials based on paired planar spirals}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {32--37}, publisher = {mathdoc}, number = {3}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PFMT_2024_3_a5/} }
TY - JOUR AU - A. L. Samofalov AU - I. A. Fanyaev AU - P. V. Somov AU - I. V. Semchenko AU - A. A. Kovalev AU - Hui Chu TI - Designing a phase manipulator using metamaterials based on paired planar spirals JO - Problemy fiziki, matematiki i tehniki PY - 2024 SP - 32 EP - 37 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PFMT_2024_3_a5/ LA - ru ID - PFMT_2024_3_a5 ER -
%0 Journal Article %A A. L. Samofalov %A I. A. Fanyaev %A P. V. Somov %A I. V. Semchenko %A A. A. Kovalev %A Hui Chu %T Designing a phase manipulator using metamaterials based on paired planar spirals %J Problemy fiziki, matematiki i tehniki %D 2024 %P 32-37 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/PFMT_2024_3_a5/ %G ru %F PFMT_2024_3_a5
A. L. Samofalov; I. A. Fanyaev; P. V. Somov; I. V. Semchenko; A. A. Kovalev; Hui Chu. Designing a phase manipulator using metamaterials based on paired planar spirals. Problemy fiziki, matematiki i tehniki, no. 3 (2024), pp. 32-37. http://geodesic.mathdoc.fr/item/PFMT_2024_3_a5/
[1] I.V. Semchenko, S.A. Khakhomov, Elektromagnitnye volny v metamaterialakh i spiralnykh strukturakh, monografiya, Belaruskaya navuka, Minsk, 2019, 279 pp.
[2] T.J. Cui et al., “Coding metamaterials, digital metamaterials and programmable metamaterials”, Light Sci. Appl., 3 (2014), 218 | DOI
[3] L.H. Gao et al., “Broadband diffusion of terahertz waves by multi-bit coding metasurfaces”, Light Sci. Appl., 4 (2015), 324
[4] S. Liu et al., “Frequency-dependent dual-functional coding metasurfaces at terahertz frequencies”, Adv. Opt. Mater., 4 (2016), 1965–1973 | DOI
[5] W. Xu et al., “An ultra-thin broadband active frequency selective surface absorber for ultrahigh-frequency applications”, J. Appl. Phys., 118 (2015), 1849031-1849038
[6] B. Zhu, J. Zhao, Y. Feng, “Active impedance metasurface with full 360 deg reflection phase tuning”, Sci. Rep., 3 (2013), 3059 | DOI
[7] B. Zhu et al., “Dynamic control of electromagnetic wave propagation with the equivalent principle inspired tunable metasurface”, Sci. Rep., 4 (2014), 4971 | DOI
[8] A. Arbabi et al., “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission”, Nature Nanotechnology, 10 (2015), 937-943 | DOI
[9] Y. Huanhuan et al., “A programmable metasurface with dynamic polarization, scattering and focusing control”, Scientific Reports, 6 (2016), 35692 | DOI
[10] I.G. Lee, J.Y. Kim, I.P. Hong, “Design of multi-functional transmitarray with active linear polarization conversion and beam steering capabilities”, Appl. Sci., 12 (2022), 4319 | DOI
[11] Y. Li, Q. Cao, Y. Wang, “A wideband multifunctional multilayer switchable linear polarization metasurface”, IEEE Antennas Wirel. Propag. Lett., 17 (2018), 1314-1318 | DOI
[12] C. Huang et al., “Reconfigurable metasurface for multifunctional control of electromagnetic waves”, Adv. Opt. Mater., 5 (2017), 1700485 | DOI
[13] T.K. Pham et al., “Dual-band transmitarray with low scan loss for satcom applications”, IEEE Trans. Antennas Propag., 69 (2021), 1775-1780 | DOI
[14] L. Di Palma et al., “Circularly-polarized reconfigurable transmit array in Ka-band with beam scanning and polarization switching capabilities”, IEEE Trans. Antennas Propag., 65 (2017), 529-540 | DOI | MR
[15] C. Huang et al., “Using reconfigurable transmitarray to achieve beam-steering and polarization manipulation applications”, IEEE Trans. Antennas Propag., 63 (2015), 4801-4810 | DOI | MR | Zbl