Comparative analysis of filtration algorithms for images of architectural plans
Problemy fiziki, matematiki i tehniki, no. 3 (2024), pp. 86-91

Voir la notice de l'article provenant de la source Math-Net.Ru

The use of smoothing filters for pre-processing images of architectural plans is considered. A comparative analysis of Gaussian and Roudin – Osher – Fatemi (ROF) filters based on the Chambolle model is carried out. The software modules are implemented in the Python programming language using OpenCV. The results showed that for pre-processing not very noisy images it is better to use a Gaussian filter, and for images with a high noise level it is better to use the ROF filter, which prevents the loss of special corner points.
Keywords: preprocessing, filtering, Gaussian blur, Gaussian filter, Rudin – Osher – Fatemi filter, Chambolle model, Python, OpenCV.
Mots-clés : noise
@article{PFMT_2024_3_a14,
     author = {N. A. Aksionova},
     title = {Comparative analysis of filtration algorithms for images of architectural plans},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {86--91},
     publisher = {mathdoc},
     number = {3},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2024_3_a14/}
}
TY  - JOUR
AU  - N. A. Aksionova
TI  - Comparative analysis of filtration algorithms for images of architectural plans
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2024
SP  - 86
EP  - 91
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2024_3_a14/
LA  - ru
ID  - PFMT_2024_3_a14
ER  - 
%0 Journal Article
%A N. A. Aksionova
%T Comparative analysis of filtration algorithms for images of architectural plans
%J Problemy fiziki, matematiki i tehniki
%D 2024
%P 86-91
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2024_3_a14/
%G ru
%F PFMT_2024_3_a14
N. A. Aksionova. Comparative analysis of filtration algorithms for images of architectural plans. Problemy fiziki, matematiki i tehniki, no. 3 (2024), pp. 86-91. http://geodesic.mathdoc.fr/item/PFMT_2024_3_a14/