On the existence of trigonometric Pad\'e approximations
Problemy fiziki, matematiki i tehniki, no. 3 (2024), pp. 71-76.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work, based on the well-known results on classical Padé approximants of power series, the conditions are found under which trigonometric Padé – Jacobi approximants exist for a given Fourier series. This made it possible to describe the class of Fourier series in Chebyshev polynomials of the first and second kind, for which there are nonlinear Padé – Chebyshev approximants. In particular, another proof of the well-known theorem of S.P. Suetin is given.
Mots-clés : Padé approximants
Keywords: Padé – Chebyshev approximations, power series, Fourier series, series in Chebyshev polynomials.
@article{PFMT_2024_3_a11,
     author = {A. P. Starovoitov and T. M. Osnach and N. V. Ryabchenko},
     title = {On the existence of trigonometric {Pad\'e} approximations},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {71--76},
     publisher = {mathdoc},
     number = {3},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2024_3_a11/}
}
TY  - JOUR
AU  - A. P. Starovoitov
AU  - T. M. Osnach
AU  - N. V. Ryabchenko
TI  - On the existence of trigonometric Pad\'e approximations
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2024
SP  - 71
EP  - 76
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2024_3_a11/
LA  - ru
ID  - PFMT_2024_3_a11
ER  - 
%0 Journal Article
%A A. P. Starovoitov
%A T. M. Osnach
%A N. V. Ryabchenko
%T On the existence of trigonometric Pad\'e approximations
%J Problemy fiziki, matematiki i tehniki
%D 2024
%P 71-76
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2024_3_a11/
%G ru
%F PFMT_2024_3_a11
A. P. Starovoitov; T. M. Osnach; N. V. Ryabchenko. On the existence of trigonometric Pad\'e approximations. Problemy fiziki, matematiki i tehniki, no. 3 (2024), pp. 71-76. http://geodesic.mathdoc.fr/item/PFMT_2024_3_a11/

[1] Dzh. Beiker ml., P. Greivs-Morris, Approksimatsii Pade, v. 1, Osnovy teorii, Mir, M., 1986; т. 2, Обобщения и приложения

[2] Yu.A. Labych, A.P. Starovoitov, “Trigonometricheskie approksimatsii Pade funktsii s regulyarno ubyvayuschimi koeffitsientami Fure”, Matematicheskii sbornik, 200:7 (2009), 107-130 | DOI | Zbl

[3] A.P. Starovoitov, E.P. Kechko, T.M. Osnach, “Suschestvovanie i edinstvennost sovmestnykh approksimatsii Ermita - Fure”, Problemy fiziki, matematiki i tekhniki, 2023, no. 2 (55), 68-73 | Zbl

[4] A.P. Starovoitov, E.P. Kechko, T.M. Osnach, “O suschestvovanii trigonometricheskikh approksimatsii Ermita-Yakobi i nelineinykh approksimatsii Ermita-Chebysheva”, Zhurnal Belorusskogo gosudarstvennogo universiteta. Matematika. Informatika, 2023, no. 2, 6-17

[5] S.P. Suetin, “O suschestvovanii nelineinykh approksimatsii Pade-Chebysheva dlya analiticheskikh funktsii”, Matematicheskie zametki, 86:2 (2009), 290-303 | DOI | Zbl

[6] H. Pade, “Sur la representation approchee d'une fonction par des fractions rationnelles”, Annales scientifiques de l'E.N.S. Ser. 3, 9 (1892), 3-93 | MR

[7] G. Frobenious, “Ueber Relationen zwischen den Naherungsbruchen von Potenzreihen”, Journal fur die reine und angewandte Mathematik, 90 (1881), 1-17 | DOI | MR

[8] E.M. Nikishin, V.N. Sorokin, Ratsionalnye approksimatsii i ortogonalnost, Nauka, M., 1988

[9] C. Jacobi, “Uber die Darstellung einer Reihe gegebner Werthe durch eine gebrochne rationale Function”, J. Reine Angew. Math., 30 (1846), 127-156 | MR

[10] A.P. Starovoitov, N.V. Ryabchenko, “O determinantnykh predstavleniyakh mnogochlenov Ermita-Pade”, Trudy Moskovskogo matematicheskogo obschestva, 83, no. 1, 2022, 17-35

[11] A.A. Gonchar, E.A. Rakhmanov, S.P. Suetin, “Approksimatsii Pade-Chebysheva dlya mnogoznachnykh analiticheskikh funktsii, variatsiya ravnovesnoi energii i S-svoistvo statsionarnykh kompaktov”, UMN, 66:6 (2011), 3-36 | DOI