Polarization and energy properties of the cartesian TM-modes of Kummer--Gauss beams
Problemy fiziki, matematiki i tehniki, no. 2 (2024), pp. 22-26.

Voir la notice de l'article provenant de la source Math-Net.Ru

New vector solutions of the parabolic equation describing Cartesian vector astigmatic TM Kummer–Gauss (K-G) light beams are proposed. The polarization and energy properties of such beams are investigated. The graphical modeling of ellipses of polarization, intensity and transverse energy fluxes of vector astigmatic TM of K-G light beams is carried out.
Mots-clés : TM-modes
Keywords: astigmatic beams, Kummer–Gaussian beams, polarization, transverse energy fluxes.
@article{PFMT_2024_2_a3,
     author = {S. S. Girgel},
     title = {Polarization and energy properties of the cartesian {TM-modes} of {Kummer--Gauss} beams},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {22--26},
     publisher = {mathdoc},
     number = {2},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2024_2_a3/}
}
TY  - JOUR
AU  - S. S. Girgel
TI  - Polarization and energy properties of the cartesian TM-modes of Kummer--Gauss beams
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2024
SP  - 22
EP  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2024_2_a3/
LA  - ru
ID  - PFMT_2024_2_a3
ER  - 
%0 Journal Article
%A S. S. Girgel
%T Polarization and energy properties of the cartesian TM-modes of Kummer--Gauss beams
%J Problemy fiziki, matematiki i tehniki
%D 2024
%P 22-26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2024_2_a3/
%G ru
%F PFMT_2024_2_a3
S. S. Girgel. Polarization and energy properties of the cartesian TM-modes of Kummer--Gauss beams. Problemy fiziki, matematiki i tehniki, no. 2 (2024), pp. 22-26. http://geodesic.mathdoc.fr/item/PFMT_2024_2_a3/

[1] M.A. Bandres, J. C. Gutierres-Vega, “Cartesian beams”, Optics Letters, 32:23 (2007), 3459–3461 | DOI

[2] S.S. Girgel, “Skalyarnye paraksialnye dvumernye gaussovopodobnye svetovye puchki Kummera–Gaussa”, Problemy fiziki, matematiki i tekhniki, 2010, no. 1 (2), 7–11

[3] S.S. Girgel, “Skalyarnye astigmaticheskie 3D svetovye puchki Kummera–Gaussa”, Problemy fiziki, matematiki i tekhniki, 2013, no. 1 (14), 19–23

[4] S.S. Girgel, “Detsentrirovannye puchki Kummera–Gaussa”, Problemy, fiziki, matematiki i tekhniki, 2015, no. 6 (93), 112–116

[5] M.V. Berry, “Optical currents”, Journal of Optics A: Pure and Applied Optics, 11:9 (2009), 094001 | DOI

[6] A. Bekshaev, K. Bliokh, M. Soskin, “Internal flows and energy circulation in light beams”, Journal of Optics, 13:5 (2011), 053001 | DOI

[7] S.S. Girgel, “Svoistva vektornykh paraksialnykh svetovykh puchkov. I. Odnorodnaya polyarizatsiya”, Problemy fiziki, matematiki i tekhniki, 2011, no. 1 (6), 20–24

[8] S.S. Girgel, “Polyarizatsionnye i energeticheskie svoistva vektornykh gaussovopodobnykh puchkov. I. Odnorodnaya polyarizatsiya”, Problemy fiziki, matematiki i tekhniki, 2016, no. 1 (26), 17–21

[9] S.S. Girgel, “Energeticheskie svoistva vektornykh vikhrevykh puchkov Lagerra–Gaussa”, Problemy fiziki, matematiki i tekhniki, 2017, no. 3 (32), 13–17

[10] S.S. Girgel, “Energeticheskie kharakteristiki vektornykh dekartovykh puchkov Kummera s perenosimoi konechnoi moschnostyu”, Problemy fiziki, matematiki i tekhniki, 2022, no. 3 (52), 13–17

[11] S.S. Girgel, “Polyarizatsionnye i energeticheskie svoistva vektornykh vektornykh paraksialnykh gaussovykh svetovykh puchkov”, Problemy fiziki, matematiki i tekhniki, 2012, no. 3 (12), 19–23

[12] S.S. Girgel, “Polyarizatsionnye i energeticheskie svoistva vektornykh gaussovopodobnykh puchkov. II. Neodnorodnaya polyarizatsiya”, Problemy fiziki, matematiki i tekhniki, 2017, no. 4 (33), 7–10

[13] S.S. Girgel, “Energeticheskie kharakteristiki vektornykh tsirkulyarnykh puchkov Kummera konechnoi moschnosti. II. Neodnorodnaya polyarizatsiya”, Problemy fiziki, matematiki i tekhniki, 2023, no. 1 (54), 13–17

[14] S.S. Girgel, “Polyarizatsionnye svoistva i poperechnye potoki energii vektornykh vektornykh bessel-gaussovykh TM svetovykh puchkov”, Problemy fiziki, matematiki i tekhniki, 2023, no. 2 (55), 15–19