Finite groups with systems of $N$-quasinormal subgroups
Problemy fiziki, matematiki i tehniki, no. 2 (2024), pp. 79-83
Cet article a éte moissonné depuis la source Math-Net.Ru
Throughout the article, all groups are finite and $G$ always denotes a finite group. A subgroup $A$ of a group $G$ is called quasinormal in $G$ if $AH = HA$ for all subgroups $H$ of $G$. If $A$ is a subgroup of $G$, then $A_{qG}$ is the subgroup of $A$ generated by all those subgroups of $A$ that are quasinormal in $G$. We say that the subgroup $A$ is $N$-quasinormal in $G$ ($N\geqslant G$), if for some quasinormal subgroup of $T$ of $G$, containing $A$, $N$ avoids the pair $(T, A_{qG})$, i. e. $N\cap T=N\cap A_{qG}$. Using these concepts, we give new characterizations of soluble and supersoluble finite groups.
Keywords:
finite group, supersoluble group, subgroup lattice, quasinormal subgroup, modular lattice.
Mots-clés : soluble group
Mots-clés : soluble group
@article{PFMT_2024_2_a13,
author = {N. S. Kosenok and I. V. Bliznets and I. A. Sobol and Ya. A. Kuptsova},
title = {Finite groups with systems of $N$-quasinormal subgroups},
journal = {Problemy fiziki, matematiki i tehniki},
pages = {79--83},
year = {2024},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PFMT_2024_2_a13/}
}
TY - JOUR AU - N. S. Kosenok AU - I. V. Bliznets AU - I. A. Sobol AU - Ya. A. Kuptsova TI - Finite groups with systems of $N$-quasinormal subgroups JO - Problemy fiziki, matematiki i tehniki PY - 2024 SP - 79 EP - 83 IS - 2 UR - http://geodesic.mathdoc.fr/item/PFMT_2024_2_a13/ LA - ru ID - PFMT_2024_2_a13 ER -
N. S. Kosenok; I. V. Bliznets; I. A. Sobol; Ya. A. Kuptsova. Finite groups with systems of $N$-quasinormal subgroups. Problemy fiziki, matematiki i tehniki, no. 2 (2024), pp. 79-83. http://geodesic.mathdoc.fr/item/PFMT_2024_2_a13/
[1] R. Schmidt, Subgroup Lattices of Groups, Walter de Gruyter, Berlin, 1994 | MR | Zbl
[2] O. Ore, “Contributions in the theory of groups of finite order”, Duke Math J., 5 (1939), 431-460 | MR | Zbl
[3] Zh. Wang, A-Ming Liu, V.G. Safonov, A.N. Skiba, “A characterization of soluble PST-groups”, Bull. Austral. Math. Soc. (to appear)
[4] A-Ming Liu, Zh. Wang, V.G. Safonov, A.N. Skiba, “Characterization of $\sigma$-soluble P$\sigma$T-groups”, J. Group Theory (to appear)
[5] K. Doerk, T. Hawkes, Finite Soluble Groups, Walter de Gruyter, Berlin–New York, 1992 | MR
[6] A.N. Skiba, “On sublattices of the subgroup lattice defined by formation Fitting sets”, J. Algebra, 181 (2020), 69-85 | DOI | MR