Finite groups with hereditarily $G$-permutable subgroups of small order
Problemy fiziki, matematiki i tehniki, no. 1 (2024), pp. 63-67.

Voir la notice de l'article provenant de la source Math-Net.Ru

The structure of a finite group $G$ is investigated, in which all subgroups of order 2 and 3 as well as all cyclic subgroups of order 4 are hereditarily $G$-permutable in $G$.
Keywords: finite group, hereditarily $G$-permutable subgroup
Mots-clés : soluble group.
@article{PFMT_2024_1_a8,
     author = {P. V. Bychkov and S. F. Kamornikov and V. N. Tyutyanov},
     title = {Finite groups with hereditarily $G$-permutable subgroups of small order},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {63--67},
     publisher = {mathdoc},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2024_1_a8/}
}
TY  - JOUR
AU  - P. V. Bychkov
AU  - S. F. Kamornikov
AU  - V. N. Tyutyanov
TI  - Finite groups with hereditarily $G$-permutable subgroups of small order
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2024
SP  - 63
EP  - 67
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2024_1_a8/
LA  - ru
ID  - PFMT_2024_1_a8
ER  - 
%0 Journal Article
%A P. V. Bychkov
%A S. F. Kamornikov
%A V. N. Tyutyanov
%T Finite groups with hereditarily $G$-permutable subgroups of small order
%J Problemy fiziki, matematiki i tehniki
%D 2024
%P 63-67
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2024_1_a8/
%G ru
%F PFMT_2024_1_a8
P. V. Bychkov; S. F. Kamornikov; V. N. Tyutyanov. Finite groups with hereditarily $G$-permutable subgroups of small order. Problemy fiziki, matematiki i tehniki, no. 1 (2024), pp. 63-67. http://geodesic.mathdoc.fr/item/PFMT_2024_1_a8/

[1] O. Ore, “Contributions in the theory of groups of finite order”, Duke Math. J., 5 (1939), 431–460 | MR | Zbl

[2] V. Go, A.N. Skiba, K.P. Sham, “X-perestanovochnye podgruppy”, Sibirskii matematicheskii zhurnal, 48:4 (2007), 742–759 | Zbl

[3] A.A. Galt, V.N. Tyutyanov, “O suschestvovanii G-perestanovochnykh podgrupp v prostykh sporadicheskikh gruppakh”, Sibirskii matematicheskii zhurnal, 63:4 (2022), 831–841

[4] A.A. Galt, V.N. Tyutyanov, “O suschestvovanii G-perestanovochnykh podgrupp v isklyuchitelnykh gruppakh G lieva tipa”, Sibirskii matematicheskii zhurnal, 64:5 (2023), 935–945 | Zbl

[5] S.F. Kamornikov, V.N. Tyutyanov, “Konechnye gruppy s nasledstvenno G-perestanovochnymi minimalnymi podgruppami”, Trudy Instituta matematiki i mekhaniki UrO RAN, 29, no. 1, 2023, 102–110 | Zbl

[6] S.F. Kamornikov, V.N. Tyutyanov, “O razreshimosti i sverkhrazreshimosti konechnykh grupp”, Sibirskii matematicheskii zhurnal, 64:2 (2023), 312–320 | Zbl

[7] A. Ballester-Bolinches, S.F. Kamornikov, V. Pérez-Calabuig, V.N. Tyutyanov, “Finite groups with G-permutable Schmidt subgroups”, Mediterranean Journal of Mathematics, 20 (2023), 174, 12 pp. | DOI | MR | Zbl

[8] A. Ballester-Bolinches, S.F. Kamornikov, V. Pérez-Calabuig, V.N. Tyutyanov, “Finite groups with hereditarily G-permutable Schmidt subgroups”, Bull. Austral. Math. Soc., 2023, 1–7 | DOI | MR

[9] The Kourovka Notebook: Unsolved problems in group theory, Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 2022, 269 pp.

[10] K. Doerk, T. Hawkes, Finite soluble groups, Walter de Gruyter, Berlin–New York, 1992, 891 pp. | MR

[11] J.G. Thompson, “Nonsolvable finite groups all of whose local subgroups are solvable”, Bull. Amer. Math. Soc., 74:3 (1968), 383–437 | DOI | MR | Zbl

[12] M. Suzuki, “On a class double transitive groups”, Ann. Math., 75:1 (1962), 105–145 | DOI | MR | Zbl

[13] D. Gorenstein, Finite groups, American Mathematical Society, New York, 1980, 519 pp. | MR

[14] B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin, 1967, 796 pp. | MR | Zbl

[15] J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker, R.A. Wilson, Atlas of finite groups, Clarendon Press, Oxford, 1985, 252 pp. | MR

[16] L.A. Shemetkov, Formatsii konechnykh grupp, Nauka, M., 1978, 272 pp.