Intellectual adaptive control system with feedback connections
Problemy fiziki, matematiki i tehniki, no. 1 (2024), pp. 93-98.

Voir la notice de l'article provenant de la source Math-Net.Ru

A method for control adaptation is proposed based on multi-level coupling of neuroregulators and simulation models of technological operations for adaptive control of the technological cycle with control feedback. A new-generation intellectual system based on open semantic technologies for intelligent systems (OSTIS) is described alongside with the principles of its creation, implemented algorithms and construction procedure.
Keywords: OSTIS integrated environment, event processing unit, knowledge base, control system, models of neuroregulators, feedback synthesis, computer adaptation system.
@article{PFMT_2024_1_a13,
     author = {V. S. Smorodin and V. A. Prohorenko},
     title = {Intellectual adaptive control system with feedback connections},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {93--98},
     publisher = {mathdoc},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2024_1_a13/}
}
TY  - JOUR
AU  - V. S. Smorodin
AU  - V. A. Prohorenko
TI  - Intellectual adaptive control system with feedback connections
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2024
SP  - 93
EP  - 98
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2024_1_a13/
LA  - ru
ID  - PFMT_2024_1_a13
ER  - 
%0 Journal Article
%A V. S. Smorodin
%A V. A. Prohorenko
%T Intellectual adaptive control system with feedback connections
%J Problemy fiziki, matematiki i tehniki
%D 2024
%P 93-98
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2024_1_a13/
%G ru
%F PFMT_2024_1_a13
V. S. Smorodin; V. A. Prohorenko. Intellectual adaptive control system with feedback connections. Problemy fiziki, matematiki i tehniki, no. 1 (2024), pp. 93-98. http://geodesic.mathdoc.fr/item/PFMT_2024_1_a13/

[1] V.S. Smorodin, I.V. Maksimei, Metody i sredstva imitatsionnogo modelirovaniya tekhnologicheskikh protsessov proizvodstva, monografiya, M-vo obrazovaniya RB, Gomelskii gosudarstvennyi universitet imeni Frantsiska Skoriny, GGU im. F. Skoriny, Gomel, 2007, 369 pp.

[2] V.A. Prokhorenko i dr., “Avtomatizatsiya proizvodstvennoi deyatelnosti v ramkakh Ekosistemy OSTIS”, Tekhnologiya kompleksnoi podderzhki zhiznennogo tsikla semanticheski sovmestimykh intellektualnykh kompyuternykh sistem novogo pokoleniya, monografiya, Gl. 7.7, ed. V.V. Golenkov, BGUIR, Minsk, 2023, 805–830

[3] V. Smorodin, V. Prokhorenko, “Application of Neuro-Controller Models for Adaptive Control”, Recent Developments in Data Science and Intelligent Analysis of Information. ICDSIAI 2018, Advances in Intelligent Systems and Computing, 836, no. 7, ed. O.Chertov et al., Springer, Cham, 2018, 30–38 | DOI

[4] V. Smorodin, V. Prokhorenko, “Software-Technological Complex For Adaptive Control Of A Production Cycle Of Robotic Manufacturing”, Open semantic technologies for intelligent systems, 2022, no. 6, 401–404

[5] D. Ivaniuk, V. Taberko, V. Smorodin, V. Prokhorenko, “Adaptive Control System for Technological Process within OSTIS Ecosystem”, Open semantic technologies for intelligent systems, 2023, no. 7, 291–298

[6] V. Smorodin, V. Prokhorenko, “Control Of A Technological Cycle Of Production Process Based On A Neuro-Controller Model”, Open semantic technologies for intelligent systems, 2019, no. 3, 251–256

[7] P. Ladosz, L. Weng, M. Kim, H. Oh, “Exploration in deep reinforcement learning: A survey”, Information Fusion, 85 (2022), 1–22 | DOI | MR

[8] Yu.V. Nikityuk, V.A. Prokhorenko, A.I. Kulyba, “Mnogokriterialnaya optimizatsiya parametrov lazernoi rezki kvartsevogo stekla s primeneniem neirosetevogo modelirovaniya i geneticheskogo algoritma”, Problemy fiziki, matematiki i tekhniki, 2023, no. 3 (56), 26–31

[9] K.O. Stanley, R. Miikkulainen, “Evolving Neural Networks Through Augmenting Topologies”, Evolutionary Computation, 10:2 (2002), 99–127 | DOI