Tm modes of vector Cartesian Kummer beams with transferable limited power
Problemy fiziki, matematiki i tehniki, no. 1 (2024), pp. 16-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

New vector solutions of the parabolic equation describing vector Cartesian paraxial TM Kummer light beams are proposed. The admissible values of free parameters at which Kummer beams transfer limited power are established and are physically realized. The polarization and energy properties of such beams are investigated. The graphic modeling is executed and the corresponding analysis of the ellipses of polarization, intensity and transverse energy fluxes of vector paraxial TM Kummer light beams is carried out.
Mots-clés : TM modes
Keywords: vector beams, Kummer beams, transverse energy fluxes.
@article{PFMT_2024_1_a1,
     author = {S. S. Girgel},
     title = {Tm modes of vector {Cartesian} {Kummer} beams with transferable limited power},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {16--21},
     publisher = {mathdoc},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2024_1_a1/}
}
TY  - JOUR
AU  - S. S. Girgel
TI  - Tm modes of vector Cartesian Kummer beams with transferable limited power
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2024
SP  - 16
EP  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2024_1_a1/
LA  - ru
ID  - PFMT_2024_1_a1
ER  - 
%0 Journal Article
%A S. S. Girgel
%T Tm modes of vector Cartesian Kummer beams with transferable limited power
%J Problemy fiziki, matematiki i tehniki
%D 2024
%P 16-21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2024_1_a1/
%G ru
%F PFMT_2024_1_a1
S. S. Girgel. Tm modes of vector Cartesian Kummer beams with transferable limited power. Problemy fiziki, matematiki i tehniki, no. 1 (2024), pp. 16-21. http://geodesic.mathdoc.fr/item/PFMT_2024_1_a1/

[1] Yu.A. Ananev, Opticheskie rezonatory i lazernye puchki, Nauka, M., 1990, 264 pp.

[2] A.M. Goncharenko, Gaussovy puchki sveta, Nauka i tekhnika, Minsk, 1977, 142 pp.

[3] S.S. Girgel, “Skalyarnye paraksialnye dvumernye gaussovopodobnye puchki”, Problemy, fiziki, matematiki i tekhniki, 2010, no. 1 (2), 7–11

[4] S.S. Girgel, “Fizicheskie svoistva skalyarnykh 2D puchkov Kummera–Gaussa”, Problemy, fiziki, matematiki i tekhniki, 2011, no. 4(9), 19–23

[5] S.S. Girgel, “Puchki Kummera bez gaussovoi apodizatsii s perenosimoi konechnoi moschnostyu”, Problemy fiziki, matematiki i tekhniki, 2015, no. 3(24), 7–9

[6] S.S. Girgel, “Polyarizatsionnye i energeticheskie svoistva vektornykh gaussovopodobnykh puchkov. I. Odnorodnaya polyarizatsiya”, Problemy fiziki, matematiki i tekhniki, 2016, no. 1(26), 17–21

[7] S.S. Girgel, “Polyarizatsionnye i energeticheskie svoistva vektornykh gaussovopodobnykh puchkov. II. Neodnorodnaya polyarizatsiya”, Problemy fiziki, matematiki i tekhniki, 2017, no. 4 (33), 7–10

[8] T.A. Fadeyeva, “Singular beams with transverse electric and transverse magnetic fields”, Semiconductor Physics, Quantum Electronics Optoelectronics, 16:1 (2013), 55–58 | DOI

[9] S.S. Girgel, “Energeticheskie kharakteristiki vektornykh tsirkulyarnykh puchkov Kummera konechnoi moschnosti. II. Neodnorodnaya polyarizatsiya”, Problemy, fiziki, matematiki i tekhniki, 2023, no. 1(54), 20–24

[10] S.S. Girgel, “Polyarizatsionnye svoistva i poperechnye potoki energii vektornykh bessel-gaussovykh TM svetovykh puchkov”, Problemy, fiziki, matematiki i tekhniki, 2023, no. 2(55), 15–19

[11] F.I. Fedorov, Optika anizotropnykh sred, Izd-vo AN BSSR, Minsk, 1976, 380 pp.

[12] A. Bekshaev, K. Bliokh, M. Soskin, “Internal flows and energy circulation in light beams”, Journal of Optics, 13:5 (2011), 053001 | DOI