Polarization and energy fluxes of generalized astigmatic TM Hermite--Gaussian modes
Problemy fiziki, matematiki i tehniki, no. 4 (2023), pp. 14-19.

Voir la notice de l'article provenant de la source Math-Net.Ru

New vector solutions of the parabolic equation describing vector astigmatic TM Hermite–Gaussian light beams are proposed. The polarization and energy properties of such beams are investigated. The graphical modeling of the ellipses of polarization, the intensity and transverse energy fluxes of vector astigmatic TM Hermite–Gaussian light beams is carried out.
Mots-clés : TM-modes
Keywords: astigmatic beams, Hermite–Gaussian beams, transverse energy fluxes.
@article{PFMT_2023_4_a1,
     author = {S. S. Girgel},
     title = {Polarization and energy fluxes of generalized astigmatic {TM} {Hermite--Gaussian} modes},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {14--19},
     publisher = {mathdoc},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2023_4_a1/}
}
TY  - JOUR
AU  - S. S. Girgel
TI  - Polarization and energy fluxes of generalized astigmatic TM Hermite--Gaussian modes
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2023
SP  - 14
EP  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2023_4_a1/
LA  - ru
ID  - PFMT_2023_4_a1
ER  - 
%0 Journal Article
%A S. S. Girgel
%T Polarization and energy fluxes of generalized astigmatic TM Hermite--Gaussian modes
%J Problemy fiziki, matematiki i tehniki
%D 2023
%P 14-19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2023_4_a1/
%G ru
%F PFMT_2023_4_a1
S. S. Girgel. Polarization and energy fluxes of generalized astigmatic TM Hermite--Gaussian modes. Problemy fiziki, matematiki i tehniki, no. 4 (2023), pp. 14-19. http://geodesic.mathdoc.fr/item/PFMT_2023_4_a1/

[1] Yu.A. Ananev, Opticheskie rezonatory i lazernye puchki, Nauka, M., 1990, 264 pp.

[2] A.M. Goncharenko, Gaussovy puchki sveta, Nauka i tekhnika, Minsk, 1977, 142 pp.

[3] S.S. Girgel, “Skalyarnye paraksialnye dvumernye gaussovopodobnye puchki”, Problemy fiziki, matematiki i tekhniki, 2010, no. 1 (2), 7–11

[4] S.S. Girgel, “Fizicheskie svoistva skalyarnykh 2D puchkov Kummera–Gaussa”, Problemy fiziki, matematiki i tekhniki, 2011, no. 4(9), 19–23

[5] S.S. Girgel, “Puchki Kummera bez gaussovoi apodizatsii s perenosimoi konechnoi moschnostyu”, Problemy fiziki, matematiki i tekhniki, 2015, no. 3 (24), 7–9

[6] S.S. Girgel, “Svoistva vektornykh paraksialnykh svetovykh puchkov. I. Odnorodnaya polyarizatsiya”, Problemy fiziki, matematiki i tekhniki, 2011, no. 1 (6), 20–24

[7] S.S. Girgel, “Polyarizatsionnye i energeticheskie svoistva vektornykh gaussovopodobnykh puchkov. I. Odnorodnaya polyarizatsiya”, Problemy fiziki, matematiki i tekhniki, 2016, no. 1 (26), 17–21

[8] S.S. Girgel, “Polyarizatsionnye i energeticheskie svoistva vektornykh gaussovopodobnykh puchkov. II. Neodnorodnaya polyarizatsiya”, Problemy fiziki, matematiki i tekhniki, 2017, no. 4 (33), 7–10

[9] M.V. Berry, “Optical currents”, Journal of Optics A: Pure and Applied Optics, 11:9 (2009), 094001 | DOI

[10] A.Y. Bekshaev, M.S. Soskin, “Transverse energy flows in vectorial fields of paraxial beams with singularities”, Optics Communications, 271 (2007), 332–348 | DOI

[11] A. Bekshaev, K. Bliokh, M. Soskin, “Internal flows and energy circulation in light beams”, Journal of Optics, 13:5 (2011), 053001 | DOI

[12] M.A. Bandres, J.C. Gutierrez-Vega, “Vector Helmholtz-Gauss and vector Laplace-Gauss beams”, Optics Letters, 30:16 (2005), 2155–2057 | DOI | MR

[13] T.A. Fadeyeva, “Singular beams with transverse electric and transverse magnetic fields”, Semiconductor Physics, Quantum Electronics Optoelectronics, 16:1 (2013), 55–58 | DOI

[14] Karen Volke-Sepulveda, Eugenic Ley-Koo, “General construction and connections of vector propagation invariant optical fields: TE and TM modes and polarization states”, J. Opt. A: Pure Appl. Opt., 8 (2006), 867–877 | DOI

[15] S.S. Girgel, “Energeticheskie kharakteristiki vektornykh tsirkulyarnykh puchkov Kummera konechnoi moschnosti. II. Neodnorodnaya polyarizatsiya”, Problemy fiziki, matematiki i tekhniki, 2023, no. 1(54), 20–24

[16] S.S. Girgel, “Polyarizatsionnye svoistva i poperechnye potoki energii vektornykh bessel-gaussovykh TM svetovykh puchkov”, Problemy fiziki, matematiki i tekhniki, 2023, no. 2(55), 15–19

[17] F.I. Fedorov, Optika anizotropnykh sred, Izd-vo AN BSSR, Minsk, 1976, 380 pp.