On the $p$-length of a finite factorizable group with given permutability conditions for subgroups of factors
Problemy fiziki, matematiki i tehniki, no. 3 (2023), pp. 44-47.

Voir la notice de l'article provenant de la source Math-Net.Ru

A subgroup $A$ of a group $G$ is called $tcc$-subgroup in $G$, if there is a subgroup $T$ of $G$ such that $G=AT$ and for any $X\leq A$ and for any $Y\leq T$ there exists an element $u\in\langle X, Y\rangle$ such that $XY^u\leqslant G$. Suppose that $G=AB$ is a product of two $p$-soluble $tcc$-subgroups $A$ and $B$. We give a bound of the $p$-length of $G$ from the nilpotent class and the number of generators of $A_p$ and $B_p$, where $A_p$ and $B_p$ are the Sylow subgroups of $A$ and $B$ respectively.
Keywords: finite group, $tcc$-subgroup, $p$-length.
Mots-clés : $p$-solvable group
@article{PFMT_2023_3_a7,
     author = {E. V. Zubei and A. A. Trofimuk},
     title = {On the $p$-length of a finite factorizable group with given permutability conditions for subgroups of factors},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {44--47},
     publisher = {mathdoc},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2023_3_a7/}
}
TY  - JOUR
AU  - E. V. Zubei
AU  - A. A. Trofimuk
TI  - On the $p$-length of a finite factorizable group with given permutability conditions for subgroups of factors
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2023
SP  - 44
EP  - 47
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2023_3_a7/
LA  - ru
ID  - PFMT_2023_3_a7
ER  - 
%0 Journal Article
%A E. V. Zubei
%A A. A. Trofimuk
%T On the $p$-length of a finite factorizable group with given permutability conditions for subgroups of factors
%J Problemy fiziki, matematiki i tehniki
%D 2023
%P 44-47
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2023_3_a7/
%G ru
%F PFMT_2023_3_a7
E. V. Zubei; A. A. Trofimuk. On the $p$-length of a finite factorizable group with given permutability conditions for subgroups of factors. Problemy fiziki, matematiki i tehniki, no. 3 (2023), pp. 44-47. http://geodesic.mathdoc.fr/item/PFMT_2023_3_a7/

[1] V.S. Monakhov, Vvedenie v teoriyu konechnykh grupp i ikh klassov, Vysheishaya shkola, Minsk, 2006, 207 pp.

[2] P. Hall, G. Higman, “The p-lengh of a p-soluble groups and reduction theorems for Burnside's problem”, Proc. London Math. Soc., 3:7 (1956), 1–42 | DOI | MR | Zbl

[3] V.D. Mazurov, S.A. Syskin, “O konechnykh gruppakh s spetsialnymi silovskimi 2-podgruppami”, Matematicheskie zametki, 14:2 (1973), 217–222

[4] A.Kh. Zhurtov, S.A. Syskin, “O gruppakh Shmidta”, Sibirskii matematicheskii zhurnal, 28:2 (1987), 74–78 | Zbl

[5] V.S. Monakhov, “Proizvedenie konechnykh grupp, blizkikh k nilpotentnym”, Konechnye gruppy, Nauka i tekhnika, Minsk, 1975, 70–100

[6] V.N. Knyagina, V.S. Monakhov, “O p-dline proizvedeniya dvukh grupp Shmidta”, Sibirskii matematicheskii zhurnal, 45:2 (2004), 329–333 | Zbl

[7] V.S. Monakhov, “Proizvedenie dvukh grupp Shmidta”, DAN BSSR, 19:1 (1975), 8–11

[8] J. Cossey, Y. Li, “On the p-length of the mutually permutable product of two p-soluble groups”, Arch. Math., 110 (2018), 533–537 | DOI | MR | Zbl

[9] E. Jabara, “The Fitting length of a product of mutually permutable finite groups”, Acta Math. Hungar., 159 (2019), 206–210 | DOI | MR | Zbl

[10] V.I. Murashka, A.F. Vasil'ev, “On the lengths of mutually permutable products of finite groups”, Acta Math. Hungar., 2023 | DOI | MR

[11] A.A. Trofimuk, “On the supersolubility of a group with some tcc-subgroups”, J. Algebra Appl., 20:2 (2021), 2150020-1–2150020-18 | DOI | MR

[12] A.A. Trofimuk, “On numerical invariants of a finite group factorized by tcc-subgroups”, Quaest. Math., 2023 | DOI | MR | Zbl

[13] M. Arroyo-Jorda, P. Arroyo-Jorda, “Conditional permutability of subgroups and certain classes of groups”, J. Algebra, 476 (2017), 395–414 | DOI | MR | Zbl

[14] B. Huppert, Endliche Gruppen I, Berlin–Heidelberg–New York, 1967, 796 pp. | MR | Zbl