Vector circular paraxial Kummer--Gauss beams. Polarization and power properties
Problemy fiziki, matematiki i tehniki, no. 3 (2023), pp. 7-11.

Voir la notice de l'article provenant de la source Math-Net.Ru

Analytical expressions in the closed form for vector circular 3D light of Kummer–Gauss beams from a uniform and non-uniform polarizations are offered and are investigated. Restrictions on free parameters that such of Kummer–Gauss beams transferred final power are formulated. Polarizing properties, longitudinal and crossflows of energy of such beams are calculated and are graphically investigated.
Keywords: paraxial beams, vector circular beams, Kummer–Gauss beams, streams of energy.
@article{PFMT_2023_3_a0,
     author = {S. S. Girgel},
     title = {Vector circular paraxial {Kummer--Gauss} beams. {Polarization} and power properties},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {7--11},
     publisher = {mathdoc},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2023_3_a0/}
}
TY  - JOUR
AU  - S. S. Girgel
TI  - Vector circular paraxial Kummer--Gauss beams. Polarization and power properties
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2023
SP  - 7
EP  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2023_3_a0/
LA  - ru
ID  - PFMT_2023_3_a0
ER  - 
%0 Journal Article
%A S. S. Girgel
%T Vector circular paraxial Kummer--Gauss beams. Polarization and power properties
%J Problemy fiziki, matematiki i tehniki
%D 2023
%P 7-11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2023_3_a0/
%G ru
%F PFMT_2023_3_a0
S. S. Girgel. Vector circular paraxial Kummer--Gauss beams. Polarization and power properties. Problemy fiziki, matematiki i tehniki, no. 3 (2023), pp. 7-11. http://geodesic.mathdoc.fr/item/PFMT_2023_3_a0/

[1] S.S. Girgel, “Tsirkulyarnye 3D svetovye puchki Kummera-Gaussa s nepreryvnym uglovym spektrom”, Problemy fiziki, matematiki i tekhniki, 2019, no. 1 (38), 16–20

[2] S.S. Girgel, “Energeticheskie kharakteristiki vektornykh tsirkulyarnykh puchkov Kummera s perenosimoi konechnoi moschnostyu”, Problemy, fiziki, matematiki i tekhniki, 2022, no. 4 (54), 16–20

[3] S.S. Girgel, “Energeticheskie kharakteristiki vektornykh tsirkulyarnykh puchkov Kummera konechnoi moschnosti. II. Neodnorodnaya polyarizatsiya”, Problemy, fiziki, matematiki i tekhniki, 2023, no. 1 (55), 1–5

[4] M.A. Bandres, J.C. Gutierrez-Vega, “Circular beams”, Optics Letters, 33:2 (2008), 177–179 | DOI

[5] M.V. Berry, “Optical currents”, Journal of Optics A: Pure and Applied Optics, 11:9 (2009), 094001 | DOI

[6] A.Y. Bekshaev, M.S. Soskin, “Transverse energy flows in vectorial fields of paraxial beams with singularities”, Optics Communications, 271 (2007), 332–348 | DOI

[7] A. Bekshaev, K. Bliokh, M. Soskin, “Internal flows and energy circulation in light beams”, Journal of Optics, 13:5 (2011), 053001 | DOI

[8] M. Abramovits, I. Stigan (red.), Spravochnik po spetsialnym funktsiyam, Nauka, M., 1979, 830 pp.

[9] M.A. Bandres, J.C. Gutierrez-Vega, “Vector Helmholtz - Gauss and vector Laplace - Gauss beams”, Optics Letters, 30:16 (2005), 2155–2057 | DOI | MR