Powers in $l$-ary groups of a special form.~I
Problemy fiziki, matematiki i tehniki, no. 2 (2023), pp. 47-51

Voir la notice de l'article provenant de la source Math-Net.Ru

The article deals with powers in polyadic groups of a special form, that is in polyadic groups with $l$-ary operation $\eta_{s,\sigma,k}$, that is called polyadic operation of a special form and is defined on Cartesian power of $A^k$ $n$-ary group $\langle A,\eta\rangle$ by substitution $\sigma\in\mathbf{S}_k$ and $n$-ary operation $\eta$.
Keywords: polyadic operation, $n$-ary group, power.
@article{PFMT_2023_2_a8,
     author = {A. M. Gal'mak},
     title = {Powers in $l$-ary groups of a special {form.~I}},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {47--51},
     publisher = {mathdoc},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2023_2_a8/}
}
TY  - JOUR
AU  - A. M. Gal'mak
TI  - Powers in $l$-ary groups of a special form.~I
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2023
SP  - 47
EP  - 51
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2023_2_a8/
LA  - ru
ID  - PFMT_2023_2_a8
ER  - 
%0 Journal Article
%A A. M. Gal'mak
%T Powers in $l$-ary groups of a special form.~I
%J Problemy fiziki, matematiki i tehniki
%D 2023
%P 47-51
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2023_2_a8/
%G ru
%F PFMT_2023_2_a8
A. M. Gal'mak. Powers in $l$-ary groups of a special form.~I. Problemy fiziki, matematiki i tehniki, no. 2 (2023), pp. 47-51. http://geodesic.mathdoc.fr/item/PFMT_2023_2_a8/