Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2023_2_a6, author = {N. N. Borodin and Yu. V. Malinkovskii}, title = {Exponential queueing networks with countable set of flows of negative customers and limited sojourn time}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {39--43}, publisher = {mathdoc}, number = {2}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PFMT_2023_2_a6/} }
TY - JOUR AU - N. N. Borodin AU - Yu. V. Malinkovskii TI - Exponential queueing networks with countable set of flows of negative customers and limited sojourn time JO - Problemy fiziki, matematiki i tehniki PY - 2023 SP - 39 EP - 43 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PFMT_2023_2_a6/ LA - ru ID - PFMT_2023_2_a6 ER -
%0 Journal Article %A N. N. Borodin %A Yu. V. Malinkovskii %T Exponential queueing networks with countable set of flows of negative customers and limited sojourn time %J Problemy fiziki, matematiki i tehniki %D 2023 %P 39-43 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/PFMT_2023_2_a6/ %G ru %F PFMT_2023_2_a6
N. N. Borodin; Yu. V. Malinkovskii. Exponential queueing networks with countable set of flows of negative customers and limited sojourn time. Problemy fiziki, matematiki i tehniki, no. 2 (2023), pp. 39-43. http://geodesic.mathdoc.fr/item/PFMT_2023_2_a6/
[1] Yu.V. Malinkovskii, N.N. Borodin, “Seti massovogo obsluzhivaniya s konechnym chislom potokov otritsatelnykh zayavok i s ogranichennym vremenem prebyvaniya”, Problemy fiziki, matematiki i tekhniki, 2018, no. 1 (34), 64–68
[2] P.P. Bocharov, A.V. Pechinkin, Teoriya massovogo obsluzhivaniya, RUDN, M., 1995, 529 pp.
[3] I.I. Gikhman, A.V. Skorokhod, Vvedenie v teoriyu sluchainykh protsessov, Nauka, M., 1977, 568 pp.
[4] E. Gelenbe, “Product-form Queueing Networks with Negative and Positive Customers”, J. Appl. Prob., 28 (1991), 656–663 | DOI | MR | Zbl