Injectors of finite $\sigma$-soluble groups
Problemy fiziki, matematiki i tehniki, no. 1 (2023), pp. 75-84

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\sigma=\{\sigma_i: i\in I\}$ be some partition of the set of all primes $\mathbb{P}$, i. e. $\mathbb{P}=\cup_{i\in I}\sigma_i$ and $\sigma_i\cap\sigma_j=\varnothing$ for all $i\ne j$. Finite group $G$ is $\sigma$-soluble, if every chief factor $H/K$ of $G$ is a $\sigma_i$-group for some $\sigma_i\in\sigma$. Fitting class $\mathfrak{H}=\cap_{\sigma_i\in\sigma}h(\sigma_i)\mathfrak{E}_{\sigma_i'}\mathfrak{E}_{\sigma_i}$ is said to be $\sigma$-class Hartley. In this paper we prove the existence and conjugacy of $\mathfrak{H}$-injectors of $G$ and describe their characterization in the terminal of the radicals.
Mots-clés : $\sigma$-soluble group
Keywords: $\sigma$-class Hartley, injector.
@article{PFMT_2023_1_a11,
     author = {N. T. Vorob'ev and E. D. Volkova},
     title = {Injectors of finite $\sigma$-soluble groups},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {75--84},
     publisher = {mathdoc},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2023_1_a11/}
}
TY  - JOUR
AU  - N. T. Vorob'ev
AU  - E. D. Volkova
TI  - Injectors of finite $\sigma$-soluble groups
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2023
SP  - 75
EP  - 84
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2023_1_a11/
LA  - ru
ID  - PFMT_2023_1_a11
ER  - 
%0 Journal Article
%A N. T. Vorob'ev
%A E. D. Volkova
%T Injectors of finite $\sigma$-soluble groups
%J Problemy fiziki, matematiki i tehniki
%D 2023
%P 75-84
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2023_1_a11/
%G ru
%F PFMT_2023_1_a11
N. T. Vorob'ev; E. D. Volkova. Injectors of finite $\sigma$-soluble groups. Problemy fiziki, matematiki i tehniki, no. 1 (2023), pp. 75-84. http://geodesic.mathdoc.fr/item/PFMT_2023_1_a11/