Exact solutions of the two-dimensional Logunov--Tavkhelidze equation with some analogues of the harmonic oscillator potential in the momentum representation
Problemy fiziki, matematiki i tehniki, no. 4 (2022), pp. 43-45.

Voir la notice de l'article provenant de la source Math-Net.Ru

The exact solutions of the two-dimensional Logunov–Tavkhelidze equation which describes the bound states of systems of two scalar particles of the equivalent mass for some variants of the relativistic generalization of the harmonic oscillator potential are obtained in the momentum representation.
Keywords: two-dimensional Logunov–Tavkhelidze equation, partial wave function, bound states, harmonic oscillator, twodimensional momentum representation.
@article{PFMT_2022_4_a7,
     author = {A. V. Paulenko and Yu. A. Grishechkin},
     title = {Exact solutions of the two-dimensional {Logunov--Tavkhelidze} equation with some analogues of the harmonic oscillator potential in the momentum representation},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {43--45},
     publisher = {mathdoc},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2022_4_a7/}
}
TY  - JOUR
AU  - A. V. Paulenko
AU  - Yu. A. Grishechkin
TI  - Exact solutions of the two-dimensional Logunov--Tavkhelidze equation with some analogues of the harmonic oscillator potential in the momentum representation
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2022
SP  - 43
EP  - 45
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2022_4_a7/
LA  - ru
ID  - PFMT_2022_4_a7
ER  - 
%0 Journal Article
%A A. V. Paulenko
%A Yu. A. Grishechkin
%T Exact solutions of the two-dimensional Logunov--Tavkhelidze equation with some analogues of the harmonic oscillator potential in the momentum representation
%J Problemy fiziki, matematiki i tehniki
%D 2022
%P 43-45
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2022_4_a7/
%G ru
%F PFMT_2022_4_a7
A. V. Paulenko; Yu. A. Grishechkin. Exact solutions of the two-dimensional Logunov--Tavkhelidze equation with some analogues of the harmonic oscillator potential in the momentum representation. Problemy fiziki, matematiki i tehniki, no. 4 (2022), pp. 43-45. http://geodesic.mathdoc.fr/item/PFMT_2022_4_a7/

[1] V.N. Kapshai, S.P. Kuleshov, N.B. Skachkov, “Tochnye resheniya kvazipotentsialnykh uravnenii dlya nekotorykh analogov potentsialov zapiraniya”, Yadernaya fizika, 37 (1983), 1292–1296

[2] V.G. Kadyshevskii, R.M. Mir-Kasimov, N.B. Skachkov, “Trekhmernaya formulirovka relyativistskoi problemy dvukh tel”, EChAYa, 2:3 (1972), 635–690 | MR

[3] V.S. Vladimirov, Obobschennye funktsii v matematicheskoi fizike, Sovremennye fiziko-tekhnicheskie problemy, Izd. 2-e, ispr. i dopoln., Nauka, M., 1979, 320 pp.

[4] V.V. Babikov, Metod fazovykh funktsii v kvantovoi mekhanike, Nauka, M., 1976, 285 pp.

[5] E. Kamke, Spravochnik po differentsialnym uravneniyam, Lan, Sankt-Peterburg, 2003, 576 pp.

[6] M. Abramovits, I. Stigan, Spravochnik po spetsialnym funktsiyam s formulami grafikami i matematicheskimi tablitsami, Nauka, M., 1979, 830 pp.

[7] I.S. Gradshtein, I.M. Ryzhik, Tablitsy integralov, summ, ryadov i proizvodnykh, izd-e 7-e, BKhV-Peterburg, SPb., 2011, 1232 pp.

[8] Yu.A. Grishechkin, V.N. Kapshai, Chislennye resheniya zadach o svyazannykh sostoyaniyakh i sostoyaniyakh rasseyaniya dlya potentsialov odnobozonnogo obmena i ikh superpozitsii, prakticheskoe rukovodstvo, M-vo obrazovaniya Respubliki Belarus, Gomelskii gos. un-t im. F. Skoriny, GGU im. F. Skoriny, Gomel, 2018, 38 pp.