Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2022_3_a4, author = {M. V. Markova}, title = {Forced vibrations of a three-layer step-variable thickness circular plate under impact}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {28--36}, publisher = {mathdoc}, number = {3}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PFMT_2022_3_a4/} }
M. V. Markova. Forced vibrations of a three-layer step-variable thickness circular plate under impact. Problemy fiziki, matematiki i tehniki, no. 3 (2022), pp. 28-36. http://geodesic.mathdoc.fr/item/PFMT_2022_3_a4/
[1] O. Bauchau, J. Craig, “Kirchhoff plate theory”, Structural analysis, 163 (2009), 819–914 | DOI
[2] S.P. Timoshenko, “On the correction for shear the differential equation for transverse vibrations of the prismatic bars”, Philosophical magazine and journal of science, 21:41 (1921), 744–746 | DOI
[3] V.V. Bolotin, Yu.N. Novichkov, Mekhanika mnogosloinykh konstruktsii, Mashinostroenie, M., 1980, 375 pp.
[4] V.V. Bolotin, “K teorii sloistykh plit”, Izvestiya AN SSSR. Mekhanika i mashinostroenie, 1963, no. 3, 65–72
[5] Yu.N. Novichkov, “Variatsionnye printsipy dinamiki i ustoichivosti mnogosloinykh obolochek”, Trudy Moskovskogo energeticheskogo in-ta. Dinamika i prochnost mashin, 1973, no. 164, 14–22
[6] E.I. Grigolyuk, P.P. Chulkov, Ustoichivost i kolebaniya trekhsloinykh obolochek, Mashinostroenie, M., 1973, 172 pp.
[7] E.I. Grigolyuk, P.P. Chulkov, “Nelineinye uravneniya tonkikh mnogosloinykh obolochek regulyarnogo stroeniya”, Inzhenernyi zhurnal. Mekhanika tverdogo tela, 1967, no. 1, 163–169
[8] V.A. Zorich, Matematicheskii analiz, v. I, izd. 6-e dopoln., MTsNMO, M., 2012, 710 pp.
[9] V. Novatskii, Teoriya uprugosti, Mir, M., 1975, 872 pp.
[10] M.V. Markova, D.V. Leonenko, “Postanovka nachalnokraevoi zadachi ob osesimmetrichnykh kolebaniyakh krugovoi trekhsloinoi plastiny peremennoi tolschiny”, mezhdunar. nauch.-tekhn. sb., Teoreticheskaya i prikladnaya mekhanika, 36, Minsk, 2022, 3–10
[11] M.V. Markova, “Vynuzhdennye kolebaniya krugovoi trekhsloinoi plastiny stupenchato-peremennoi tolschiny”, Izvestiya Gomelskogo gosudarstvennogo universiteta imeni F. Skoriny, 2022, no. 3 (132), 121–127
[12] E.I. Starovoitov i dr., “Deformirovanie stupenchatoi kompozitnoi balki v temperaturnom pole”, Inzhenerno-fizicheskii zhurnal, 88:4 (2015), 987–993
[13] E.I. Starovoitov, A.A. Poddubnyi, “Izgib trekhsloinogo sterzhnya so stupenchato-peremennoi granitsei, chastichno opertogo na uprugoe osnovanie”, Mekhanika mashin, mekhanizmov i materialov, 2011, no. 1 (14), 47–55
[14] E.I. Starovoitov, D.V. Leonenko, L.N. Rabinskii, Deformirovanie trekhsloinykh fizicheski nelineinykh sterzhnei, Izd-vo MAI, M., 2016, 184 pp.
[15] K.N. Tong, Teoriya mekhanicheskikh kolebanii, Mashgiz, M., 1963, 351 pp.
[16] I.G. Aramanovich, V.I. Levin, Uravneniya matematicheskoi fiziki, Nauka, M., 1969, 288 pp.
[17] M.V. Markova, “Inertsionnaya matematicheskaya model dinamicheskogo deformirovaniya krugovoi trekhsloinoi stupenchatoi plastiny”, Izvestiya Gomelskogo gosudarstvennogo universiteta imeni F. Skoriny, 2021, no. 6 (129), 164–170
[18] G. Beitman, A. Erdeii, Vysshie transtsendentnye funktsii, Nauka, M., 1974, 296 pp.
[19] G.N. Vatson, Teoriya Besselevykh funktsii, Izd-vo inostrannoi literatury, M., 1949, 799 pp.
[20] G.B. Arfken, H.J. Weber, Mathematical methods for physicists, 6th edition, Elsevier Inc., Oxford, 2005, 1182 pp. | MR | Zbl
[21] Yu.M. Pleskachevskii, E.I. Starovoitov, D.V. Leonenko, Mekhanika trekhsloinykh sterzhnei i plastin, svyazannykh s uprugim osnovaniem, monografiya, Fizmatlit, M., 2011, 560 pp.
[22] SP 5.04.01–2021. Stalnye konstruktsii, Vved. 29.07.2021, Minstroiarkhitektury, Minsk, 2021, 147 pp.
[23] A.M. Ivanov i dr., Stroitelnye konstruktsii s primeneniem plastmass. Primery proektirovaniya i rascheta, ucheb. posobie dlya inzh.-stroit. vuzov i fak., Vysshaya shkola, Moskva, 1968, 220 pp.