Finite groups with weakly subnormal Schmidt subgroups in some maximal subgroups
Problemy fiziki, matematiki i tehniki, no. 3 (2022), pp. 82-85.

Voir la notice de l'article provenant de la source Math-Net.Ru

A subgroup $H$ is called weakly subnormal in $G$ if $H=$ for some subgroup $A$ subnormal in $G$ and seminormal subgroup $B$ of $G$. Here the subgroup $B$ is called seminormal in $G$, if there exists a subgroup $Y$ such that $G=BY$ and $BX$ is a subgroup for each subgroup $X$ of $Y$. Finite non-nilpotent group, whose all proper subgroups are nilpotent are called Schmidt. If in a group with a nilpotent maximal subgroup the derived subgroup of a Sylow $2$-subgroup from a maximal subgroup is contained in the center of a Sylow $2$-subgroup, then the group is solvable. If the maximal subgroup of a group is non-nilpotent, then in it there is a Schmidt subgroup. The structure of the group itself, in particular, its solvability depends on the properties of Schmidt subgroups from a maximal subgroup of the group. In this paper, we establish the solubility of a finite group under the condition that some Schmidt subgroups from the maximal subgroup groups are weakly subnormal in a group.
Keywords: finite group, Schmidt subgroup, weakly subnormal subgroup, maximal subgroup.
Mots-clés : solvable group
@article{PFMT_2022_3_a13,
     author = {E. V. Zubei},
     title = {Finite groups with weakly subnormal {Schmidt} subgroups in some maximal subgroups},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {82--85},
     publisher = {mathdoc},
     number = {3},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2022_3_a13/}
}
TY  - JOUR
AU  - E. V. Zubei
TI  - Finite groups with weakly subnormal Schmidt subgroups in some maximal subgroups
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2022
SP  - 82
EP  - 85
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2022_3_a13/
LA  - en
ID  - PFMT_2022_3_a13
ER  - 
%0 Journal Article
%A E. V. Zubei
%T Finite groups with weakly subnormal Schmidt subgroups in some maximal subgroups
%J Problemy fiziki, matematiki i tehniki
%D 2022
%P 82-85
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2022_3_a13/
%G en
%F PFMT_2022_3_a13
E. V. Zubei. Finite groups with weakly subnormal Schmidt subgroups in some maximal subgroups. Problemy fiziki, matematiki i tehniki, no. 3 (2022), pp. 82-85. http://geodesic.mathdoc.fr/item/PFMT_2022_3_a13/

[1] V.S. Monakhov, Introduction to the Theory of Finite groups and their Classes, Vyshejshaja shkola, Minsk, 2006, 207 pp. (in Russian)

[2] B. Huppert, Endliche Gruppen I, Berlin–Heidelberg–New York, 1967, 796 pp. | MR | Zbl

[3] J. Thompson, “Finite groups with fixed pointfree automorphisms of prime order”, Proc. Nat. Sci. U.S.A., 45:4 (1959), 578–581 | DOI | MR | Zbl

[4] J. Thompson, “A special class of non-solvable groups”, Math. Z., 72 (1960), 458–462 | DOI | MR | Zbl

[5] V.A. Belonogov, “Solvability criterion for groups of even order”, Siberian Mathematical Journal, 7:2 (1966), 458–459 (in Russian) | MR | Zbl

[6] V.S. Monakhov, “Some solvability criteria of groups”, DAN BSSR, 14:11 (1970), 986–988 (in Russian) | Zbl

[7] V.S. Monakhov, “Influence of properties of maximal subgroups on the structure of a finite group”, Mat. Notes, 11:2 (1972), 183–190 (in Russian) | MR | Zbl

[8] B. Baumann, “Endliche nichtaufl-sbare gruppen mit einer nilpotenten maximal untergruppen”, J. Algebra, 38 (1976), 119–135 | DOI | MR | Zbl

[9] J. Huang, B. Hu, A. N. Skiba, “Finite groups with weakly subnormal and partially subnormal subgroups”, Siberian Mathematical Journal, 62:1 (2021), 169–177 | DOI | MR | Zbl

[10] A.A. Trofimuk, “On finite groups factorizable by weakly subnormal subgroups”, Siberian Mathematical Journal, 62:6 (2021), 1133–1139 | DOI | MR

[11] V.N. Knyagina, V.S. Monakhov, “Finite groups with seminormal Schmidt subgroups”, Algebra and Logic, 46:4 (2007), 244–249 | DOI | MR | Zbl

[12] V.N. Knyagina, V.S. Monakhov, “On finite groups with some subnormal Schmidt subgroups”, Siberian Mathematical Journal, 45:6 (2004), 1075–1079 | DOI | MR | Zbl

[13] Kh.A. Al-Sharo, A.N. Skiba, “On finite groups with $\sigma$-subnormal Schmidt subgroups”, Commun. Algebra, 45 (2017), 4158–4165 | DOI | MR | Zbl

[14] V.N. Knyagina, E.V. Zubei, V.S. Monakhov, “On the solvability of a finite group with S-seminormal Schmidt subgroups”, Ukrainian Mathematical Journal, 70:11 (2019), 1741–1749 | DOI | MR | Zbl

[15] O. Schmidt, “Groups, all subgroups of which are special”, Mat. Sb., 31:3–4 (1924), 366–372 (in Russian)

[16] V.S. Monakhov, “The Schmidt groups, its existence and some applications”, Tr. Ukrain. Math. Congr. (2001), v. 1, Kiev, 2002, 81–90 (in Russian) | MR | Zbl

[17] Ya.G. Berkovich, “Theorem on non-nilpotent solvable subgroups of a finite group”, Finite Groups, Nauka i Tekhnika, 1966, 24–39 (in Russian) | MR | Zbl

[18] V.S. Monakhov, “The Schmidt subgroups of finite groups”, Voprosy Algebry, 13 (1998), 153–171 (in Russian)