On identities and their generalizations in polyadic groupoids of special form.~I
Problemy fiziki, matematiki i tehniki, no. 3 (2022), pp. 76-81.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article focuses on identities and their generalizations in polyadic groupoids of special form, i. e. in polyadic groupoids with $l$-ary operation $\eta_{s,\sigma,k}$, that is called polyadic operation of special form and is defined on Cartesian power $A^k$ of $n$-ary groupoid $$ by substitution $\sigma\in\mathbf{S}_k$ and $n$-ary operation $\eta$.
Keywords: polyadic operation, $n$-ary groupoids, identity
Mots-clés : substitution.
@article{PFMT_2022_3_a12,
     author = {A. M. Gal'mak},
     title = {On identities and their generalizations in polyadic groupoids of special {form.~I}},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {76--81},
     publisher = {mathdoc},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2022_3_a12/}
}
TY  - JOUR
AU  - A. M. Gal'mak
TI  - On identities and their generalizations in polyadic groupoids of special form.~I
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2022
SP  - 76
EP  - 81
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2022_3_a12/
LA  - ru
ID  - PFMT_2022_3_a12
ER  - 
%0 Journal Article
%A A. M. Gal'mak
%T On identities and their generalizations in polyadic groupoids of special form.~I
%J Problemy fiziki, matematiki i tehniki
%D 2022
%P 76-81
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2022_3_a12/
%G ru
%F PFMT_2022_3_a12
A. M. Gal'mak. On identities and their generalizations in polyadic groupoids of special form.~I. Problemy fiziki, matematiki i tehniki, no. 3 (2022), pp. 76-81. http://geodesic.mathdoc.fr/item/PFMT_2022_3_a12/

[1] W. Dörnte, “Untersuchungen über einen verallgemeinerten Gruppenbegrieff”, Math. Z., 29 (1928), 1–19 | DOI | MR

[2] A.M. Galmak, n-Arnye gruppy, v. 1, GGU im. F. Skoriny, Gomel, 2003, 202 pp.

[3] A.M. Galmak, n-Arnye gruppy, v. 2, GGU im. F. Skoriny, Gomel, 2007, 324 pp.

[4] E.L. Post, “Polyadic groups”, Trans. Amer. Math. Soc., 48:2 (1940), 208–350 | DOI | MR | Zbl

[5] A.M. Galmak, A.D. Rusakov, “O poliadicheskikh operatsiyakh na dekartovykh stepenyakh”, Izvestiya Gomelskogo gosudarstvennogo universiteta imeni F. Skoriny, 2014, no. 3 (84), 35–40

[6] A.M. Galmak, Mnogomestnye operatsii na dekartovykh stepenyakh, Izd. tsentr BGU, Minsk, 2009, 265 pp.

[7] A.M. Galmak, “Ob operatsii $[\,]_{l,\sigma,k}$”, Vesnik MDU im. A.A. Kulyashova, 2010, no. 1 (35), 34–38

[8] A.M. Galmak, “O razreshimosti uravnenii v $\langle A^k, \eta_{s,\sigma,k}\rangle$”, Vesnik MDU imya A. A. Kulyashova, 2018, no. 1 (51), 4–10 | MR

[9] A.K. Sushkevich, Teoriya obobschennykh grupp, Kharkov–Kiev, 1937, 176 pp.

[10] R.H. Bruck, A survey of binary systems, Springer-Verlag, Berlin–Heldelberg–New York, 1966, 185 pp. | MR | Zbl

[11] V.D. Belousov, n-Arnye kvazigruppy, Shtiintsa, Kishinev, 1972, 228 pp.

[12] S.A. Rusakov, Algebraicheskie n-arnye sistemy, Navuka i tekhnika, Minsk, 1992, 245 pp.

[13] A.G. Kurosh, Obschaya algebra: Lektsii 1969/70 uchebnogo goda, Nauka, M., 1974, 160 pp.

[14] J. Ušan, n-Groups in the light of the neutral operations, Mathematika Moravica, 162, 2003 | MR

[15] Yu.I. Kulazhenko, Poliadicheskie operatsii i ikh prilozheniya, Izd. Tsentr BGU, Minsk, 2014, 311 pp.

[16] N.A. Schuchkin, Vvedenie v teoriyu n-grupp, Print, Volgograd, 2019, 236 pp.