Energy performances of the vector cartesian Kummer beams with transferable terminating power
Problemy fiziki, matematiki i tehniki, no. 3 (2022), pp. 13-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

New vector solutions of the parabolic equation, featuring Cartesian Light Kummer beams have been offered. The restrictions on parametres at which Kummer beams transfer terminating power have been discovered and physically realised. Pictorial modelling of intensity and crossflows of energy of vector Kummer beams has been fulfilled.
Keywords: cartesian beams, Kummer beams, square intergrability.
@article{PFMT_2022_3_a1,
     author = {S. S. Girgel},
     title = {Energy performances of the vector cartesian {Kummer} beams with transferable terminating power},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {13--17},
     publisher = {mathdoc},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2022_3_a1/}
}
TY  - JOUR
AU  - S. S. Girgel
TI  - Energy performances of the vector cartesian Kummer beams with transferable terminating power
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2022
SP  - 13
EP  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2022_3_a1/
LA  - ru
ID  - PFMT_2022_3_a1
ER  - 
%0 Journal Article
%A S. S. Girgel
%T Energy performances of the vector cartesian Kummer beams with transferable terminating power
%J Problemy fiziki, matematiki i tehniki
%D 2022
%P 13-17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2022_3_a1/
%G ru
%F PFMT_2022_3_a1
S. S. Girgel. Energy performances of the vector cartesian Kummer beams with transferable terminating power. Problemy fiziki, matematiki i tehniki, no. 3 (2022), pp. 13-17. http://geodesic.mathdoc.fr/item/PFMT_2022_3_a1/

[1] Yu.A. Ananev, Opticheskie rezonatory i lazernye puchki, Nauka, M., 1990, 264 pp.

[2] A.M. Goncharenko, Gaussovy puchki sveta, Nauka i tekhnika, Minsk, 1977, 142 pp.

[3] S.S. Girgel, “Skalyarnye paraksialnye dvumernye gaussovopodobnye puchki”, Problemy, fiziki, matematiki i tekhniki, 2010, no. 1 (2), 7–11

[4] S.S. Girgel, “Fizicheskie svoistva skalyarnykh 2D puchkov Kummera-Gaussa”, Problemy, fiziki, matematiki i tekhniki, 2011, no. 4 (9), 19–23

[5] S.S. Girgel, “Puchki Kummera bez gaussovoi apodizatsii s perenosimoi konechnoi moschnostyu”, Problemy fiziki, matematiki i tekhniki, 2015, no. 3 (24), 7–9

[6] M. Abramovits, I. Stigan (red.), Spravochnik po spetsialnym funktsiyam, Nauka, M., 1979, 830 pp.

[7] F.I. Fedorov, Optika anizotropnykh sred, Izd-vo AN BSSR, Minsk, 1976, 380 pp.

[8] S.S. Girgel, “Svoistva vektornykh paraksialnykh svetovykh puchkov. I. Odnorodnaya polyarizatsiya”, Problemy, fiziki, matematiki i tekhniki, 2011, no. 1 (6), 20–24

[9] S.S. Girgel, “Polyarizatsionnye i energeticheskie svoistva vektornykh gaussovopodobnykh puchkov. I. Odnorodnaya polyarizatsiya”, Problemy fiziki, matematiki i tekhniki, 2016, no. 1 (26), 17–21

[10] M.V. Berry, “Optical currents”, Journal of Optics A: Pure and Applied Optics, 11:9 (2009), 094001 | DOI

[11] A.Y. Bekshaev, M.S. Soskin, “Transverse energy flows in vectorial fields of paraxial beams with singularities”, Optics Communications, 271 (2007), 332–348 | DOI

[12] A. Bekshaev, K. Bliokh, M. Soskin, “Internal flows and energy circulation in light beams”, Journal of Optics, 13:5 (2011), 053001 | DOI