On finite groups with semisubnormal residuals of Sylow normalizers
Problemy fiziki, matematiki i tehniki, no. 2 (2022), pp. 58-62

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\pi$ be some set of primes, $G$ be a $\pi$-soluble group and $G\in\mathfrak{E}_\pi\mathfrak{E}_{\pi'}$. It is proved that if for any prime $p\in\pi\cap\pi(G)$ and Sylow $p$-subgroup $P$ from $G$ the normalizer $N_G(P)$ is $\pi$-supersoluble and its nilpotent residual is semisubnormal in $G$, then $G$ is $\pi$-supersoluble.
Keywords: finite group, Sylow normalizer, semisubnormal subgroup, nilpotent residual, $\pi$-supersoluble group.
@article{PFMT_2022_2_a9,
     author = {A. F. Vasil'ev},
     title = {On finite groups with semisubnormal residuals of {Sylow} normalizers},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {58--62},
     publisher = {mathdoc},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2022_2_a9/}
}
TY  - JOUR
AU  - A. F. Vasil'ev
TI  - On finite groups with semisubnormal residuals of Sylow normalizers
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2022
SP  - 58
EP  - 62
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2022_2_a9/
LA  - ru
ID  - PFMT_2022_2_a9
ER  - 
%0 Journal Article
%A A. F. Vasil'ev
%T On finite groups with semisubnormal residuals of Sylow normalizers
%J Problemy fiziki, matematiki i tehniki
%D 2022
%P 58-62
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2022_2_a9/
%G ru
%F PFMT_2022_2_a9
A. F. Vasil'ev. On finite groups with semisubnormal residuals of Sylow normalizers. Problemy fiziki, matematiki i tehniki, no. 2 (2022), pp. 58-62. http://geodesic.mathdoc.fr/item/PFMT_2022_2_a9/