On finite groups with semisubnormal residuals of Sylow normalizers
Problemy fiziki, matematiki i tehniki, no. 2 (2022), pp. 58-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\pi$ be some set of primes, $G$ be a $\pi$-soluble group and $G\in\mathfrak{E}_\pi\mathfrak{E}_{\pi'}$. It is proved that if for any prime $p\in\pi\cap\pi(G)$ and Sylow $p$-subgroup $P$ from $G$ the normalizer $N_G(P)$ is $\pi$-supersoluble and its nilpotent residual is semisubnormal in $G$, then $G$ is $\pi$-supersoluble.
Keywords: finite group, Sylow normalizer, semisubnormal subgroup, nilpotent residual, $\pi$-supersoluble group.
@article{PFMT_2022_2_a9,
     author = {A. F. Vasil'ev},
     title = {On finite groups with semisubnormal residuals of {Sylow} normalizers},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {58--62},
     publisher = {mathdoc},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2022_2_a9/}
}
TY  - JOUR
AU  - A. F. Vasil'ev
TI  - On finite groups with semisubnormal residuals of Sylow normalizers
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2022
SP  - 58
EP  - 62
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2022_2_a9/
LA  - ru
ID  - PFMT_2022_2_a9
ER  - 
%0 Journal Article
%A A. F. Vasil'ev
%T On finite groups with semisubnormal residuals of Sylow normalizers
%J Problemy fiziki, matematiki i tehniki
%D 2022
%P 58-62
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2022_2_a9/
%G ru
%F PFMT_2022_2_a9
A. F. Vasil'ev. On finite groups with semisubnormal residuals of Sylow normalizers. Problemy fiziki, matematiki i tehniki, no. 2 (2022), pp. 58-62. http://geodesic.mathdoc.fr/item/PFMT_2022_2_a9/

[1] G. Glauberman, “Prime-power factor groups of finite groups II”, Math. Z., 117 (1970), 46–51 | DOI | MR

[2] M. Bianchi, A. Gillio Berta Mauri, P. Hauck, “On finite soluble groups with nilpotent Sylow normalizers”, Arch. Math., 47:3 (1986), 193–197 | DOI | MR | Zbl

[3] V.S. Monakhov, M.V. Selkin, “Normalnye podgruppy konechnykh grupp i formatsii s normalizatornymi usloviyami”, Matematicheskie zametki, 66:6 (1999), 867–870 | MR | Zbl

[4] A. Ballester-Bolinshe, L.A. Shemetkov, “O normalizatorakh silovskikh podgrupp v konechnykh gruppakh”, Sibirskii matematicheskii zhurnal, 40:1 (1999), 3–5

[5] A. D'Aniello, C. De Vivo, G. Giordano, M.D. Pérez-Ramos, “Saturated formations closed under Sylow normalizers”, Commun. Algebra, 33:8 (2005), 2801–2808 | DOI | MR | Zbl

[6] L. Kazarin, A. Martínez-Pastor, M.D. Pérez-Ramos, “On Sylow normalizers of finite groups”, J. Algebra Appl., 13:3 (2014), 1350116, 20 pp. | DOI | MR | Zbl

[7] V. Fedri, L. Serena, “Finite soluble groups with supersoluble Sylow normalizers”, Arch. Math., 50:1 (1988), 11–18 | DOI | MR | Zbl

[8] R.A. Bryce, V. Fedri, L. Serena, “Bounds on the Fitting length of finite soluble groups with supersoluble Sylow normalizers”, Bull. Austral. Math. Soc., 44:1 (1991), 19–31 | DOI | MR | Zbl

[9] A.F. Vasilev, T.I. Vasileva, A.G. Koranchuk, “O konechnykh gruppakh s formatsionno subnormalnymi normalizatorami silovskikh podgrupp”, Matematicheskie zametki, 108:5 (2020), 679–691 | Zbl

[10] X. Su, “Seminormal subgroups of finite groups”, J. Math. (Wuhan), 8:1 (1988), 5–10 | MR

[11] V.S. Monakhov, A.A. Trofimuk, “On the supersolubility of a group with semisubnormal factors”, J. Group Theory, 23:5 (2020), 893–911 | DOI | MR | Zbl

[12] A.F. Vasilev, T.I. Vasileva, V.N. Tyutyanov, “O konechnykh gruppakh sverkhrazreshimogo tipa”, Sibirskii matematicheskii zhurnal, 51:6 (2010), 1270–1281 | Zbl

[13] L.A. Shemetkov, Formatsii konechnykh grupp, Nauka, M., 1978, 272 pp. | MR

[14] K. Doerk, T. Hawkes, Finite soluble groups, Walter de Gruyter, Berlin–New-York, 1992, 891 pp. | MR

[15] B. Huppert, Endliche Gruppen, v. I, Springer, Berlin, 1967, 795 pp. | MR | Zbl