Idempotents in polyadic groupoids of special form
Problemy fiziki, matematiki i tehniki, no. 2 (2022), pp. 63-67
Cet article a éte moissonné depuis la source Math-Net.Ru
The article focuses on idempotents in polyadic groups of a special form. The main result was obtained for $l$-ary group of a special form, i. e. for polyadic group with $l$-ary operation $\eta_{s,\sigma,k}$, that is called polyadic operation of a special form and is defined on Cartesian power $A^k$ of $n$-ary group $\langle A,\eta\rangle$ by substitution $\sigma\in\mathbf{S}_k$, satisfying the condition $\sigma^1=\sigma$, and $n$-ary operation $\eta$. As corollaries there were obtained the results for polyadic groups of a special form with $(2s+1)$-ary operation $\eta_{s,\sigma,k}$, which is defined on Cartesian power $A^k$ of ternary group $\langle A,\eta\rangle$ by substitution $\sigma\in\mathbf{S}_k$ which satisfies the condition $\sigma^{2s+1}=\sigma$, and ternary operation $\eta$.
Keywords:
polyadic operation, $n$-ary group, idempotent
Mots-clés : substitution.
Mots-clés : substitution.
@article{PFMT_2022_2_a10,
author = {A. M. Gal'mak},
title = {Idempotents in polyadic groupoids of special form},
journal = {Problemy fiziki, matematiki i tehniki},
pages = {63--67},
year = {2022},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PFMT_2022_2_a10/}
}
A. M. Gal'mak. Idempotents in polyadic groupoids of special form. Problemy fiziki, matematiki i tehniki, no. 2 (2022), pp. 63-67. http://geodesic.mathdoc.fr/item/PFMT_2022_2_a10/
[1] A.M. Galmak, “O razreshimosti uravnenii v $^k, \eta_{s,\sigma,k}>$”, Vesnik MDU imya A.A. Kulyashova, 2018, no. 1 (51), 4–10
[2] A.M. Galmak, Mnogomestnye operatsii na dekartovykh stepenyakh, Izdatelskii tsentr BGU, Minsk, 2009, 265 pp.
[3] E.L. Post, “Polyadic groups”, Trans. Amer. Math. Soc., 48:2 (1940), 208–350 | DOI | MR
[4] S.A. Rusakov, Algebraicheskie n-arnye sistemy, Navuka i tekhnika, Minck, 1992, 245 pp.
[5] A.M. Galmak, n-Arnye gruppy, v. 1, GGU im. F. Skoriny, Gomel, 2003, 202 pp.