Idempotents in polyadic groupoids of special form
Problemy fiziki, matematiki i tehniki, no. 2 (2022), pp. 63-67.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article focuses on idempotents in polyadic groups of a special form. The main result was obtained for $l$-ary group of a special form, i. e. for polyadic group with $l$-ary operation $\eta_{s,\sigma,k}$, that is called polyadic operation of a special form and is defined on Cartesian power $A^k$ of $n$-ary group $\langle A,\eta\rangle$ by substitution $\sigma\in\mathbf{S}_k$, satisfying the condition $\sigma^1=\sigma$, and $n$-ary operation $\eta$. As corollaries there were obtained the results for polyadic groups of a special form with $(2s+1)$-ary operation $\eta_{s,\sigma,k}$, which is defined on Cartesian power $A^k$ of ternary group $\langle A,\eta\rangle$ by substitution $\sigma\in\mathbf{S}_k$ which satisfies the condition $\sigma^{2s+1}=\sigma$, and ternary operation $\eta$.
Keywords: polyadic operation, $n$-ary group, idempotent
Mots-clés : substitution.
@article{PFMT_2022_2_a10,
     author = {A. M. Gal'mak},
     title = {Idempotents in polyadic groupoids of special form},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {63--67},
     publisher = {mathdoc},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2022_2_a10/}
}
TY  - JOUR
AU  - A. M. Gal'mak
TI  - Idempotents in polyadic groupoids of special form
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2022
SP  - 63
EP  - 67
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2022_2_a10/
LA  - ru
ID  - PFMT_2022_2_a10
ER  - 
%0 Journal Article
%A A. M. Gal'mak
%T Idempotents in polyadic groupoids of special form
%J Problemy fiziki, matematiki i tehniki
%D 2022
%P 63-67
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2022_2_a10/
%G ru
%F PFMT_2022_2_a10
A. M. Gal'mak. Idempotents in polyadic groupoids of special form. Problemy fiziki, matematiki i tehniki, no. 2 (2022), pp. 63-67. http://geodesic.mathdoc.fr/item/PFMT_2022_2_a10/

[1] A.M. Galmak, “O razreshimosti uravnenii v $^k, \eta_{s,\sigma,k}>$”, Vesnik MDU imya A.A. Kulyashova, 2018, no. 1 (51), 4–10

[2] A.M. Galmak, Mnogomestnye operatsii na dekartovykh stepenyakh, Izdatelskii tsentr BGU, Minsk, 2009, 265 pp.

[3] E.L. Post, “Polyadic groups”, Trans. Amer. Math. Soc., 48:2 (1940), 208–350 | DOI | MR

[4] S.A. Rusakov, Algebraicheskie n-arnye sistemy, Navuka i tekhnika, Minck, 1992, 245 pp.

[5] A.M. Galmak, n-Arnye gruppy, v. 1, GGU im. F. Skoriny, Gomel, 2003, 202 pp.