Polyorthogonal systems of functions
Problemy fiziki, matematiki i tehniki, no. 1 (2022), pp. 89-93

Voir la notice de l'article provenant de la source Math-Net.Ru

This article introduces multiple analogs of determinants and Gram matrices, studies the possibility of constructing polyorthogonal systems of functions using the process of polyorthogonalization of an arbitrary finite subsystem of a linearly independent system of functions $\varphi=\{\varphi_0(x), \varphi_1(x), \dots, \varphi_n(x), \dots\}$ in Pre-Hilbert function spaces generated by measures $\mu_1,\dots,\mu_k$. The proven statements are a generalization of the Gram–Schmidt orthogonalization theorem.
Keywords: Padé approximations, normal index, perfect system, Gram determinant.
Mots-clés : polyorthogonal polynomials
@article{PFMT_2022_1_a13,
     author = {A. P. Starovoitov},
     title = {Polyorthogonal systems of functions},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {89--93},
     publisher = {mathdoc},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2022_1_a13/}
}
TY  - JOUR
AU  - A. P. Starovoitov
TI  - Polyorthogonal systems of functions
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2022
SP  - 89
EP  - 93
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2022_1_a13/
LA  - ru
ID  - PFMT_2022_1_a13
ER  - 
%0 Journal Article
%A A. P. Starovoitov
%T Polyorthogonal systems of functions
%J Problemy fiziki, matematiki i tehniki
%D 2022
%P 89-93
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2022_1_a13/
%G ru
%F PFMT_2022_1_a13
A. P. Starovoitov. Polyorthogonal systems of functions. Problemy fiziki, matematiki i tehniki, no. 1 (2022), pp. 89-93. http://geodesic.mathdoc.fr/item/PFMT_2022_1_a13/