Polyorthogonal systems of functions
Problemy fiziki, matematiki i tehniki, no. 1 (2022), pp. 89-93 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This article introduces multiple analogs of determinants and Gram matrices, studies the possibility of constructing polyorthogonal systems of functions using the process of polyorthogonalization of an arbitrary finite subsystem of a linearly independent system of functions $\varphi=\{\varphi_0(x), \varphi_1(x), \dots, \varphi_n(x), \dots\}$ in Pre-Hilbert function spaces generated by measures $\mu_1,\dots,\mu_k$. The proven statements are a generalization of the Gram–Schmidt orthogonalization theorem.
Mots-clés : Padé approximations, polyorthogonal polynomials
Keywords: normal index, perfect system, Gram determinant.
@article{PFMT_2022_1_a13,
     author = {A. P. Starovoitov},
     title = {Polyorthogonal systems of functions},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {89--93},
     year = {2022},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2022_1_a13/}
}
TY  - JOUR
AU  - A. P. Starovoitov
TI  - Polyorthogonal systems of functions
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2022
SP  - 89
EP  - 93
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/PFMT_2022_1_a13/
LA  - ru
ID  - PFMT_2022_1_a13
ER  - 
%0 Journal Article
%A A. P. Starovoitov
%T Polyorthogonal systems of functions
%J Problemy fiziki, matematiki i tehniki
%D 2022
%P 89-93
%N 1
%U http://geodesic.mathdoc.fr/item/PFMT_2022_1_a13/
%G ru
%F PFMT_2022_1_a13
A. P. Starovoitov. Polyorthogonal systems of functions. Problemy fiziki, matematiki i tehniki, no. 1 (2022), pp. 89-93. http://geodesic.mathdoc.fr/item/PFMT_2022_1_a13/

[1] A.P. Starovoitov, N.V. Ryabchenko, “O yavnom vide poliortogonalnykh mnogochlenov”, Izvestiya vuzov. Matematika, 2021, no. 4, 80–89

[2] A.P. Starovoitov, N.V. Ryabchenko, “Analogi formuly Shmidta dlya poliortogonalnykh mnogochlenov pervogo tipa”, Matematicheskie zametki, 110:3 (2021), 424–433 | Zbl

[3] I.P. Natanson, Konstruktivnaya teoriya funktsii, GITTL, M.-L., 1949

[4] E. Schmidt, “Entwicklung willkürlicher Funktionen nach Systemen vorgeschriebener”, Math. Ann., 63 (1907), 433–476 | DOI | MR | Zbl

[5] I.P. Gram, “Ueber die Entwicklung reeller Funktionen in Reihen mittels der Methode der kleinsten Quadrate”, Journ. für Math., 94 (1883), 41–73 | MR

[6] E.M. Nikishin, V.N. Sorokin, Ratsionalnye approksimatsii i ortogonalnost, Nauka, M., 1988 | MR

[7] F. Beukers, “A note on the irrationality of $\zeta(1.2)$ and $\zeta(1.3)$”, Bull. London Math. Soc., 11 (1979), 268–272 | DOI | MR | Zbl

[8] V.N. Sorokin, “Approksimatsii Ermita–Pade dlya sistem Nikishina i irratsionalnost chisla $\zeta(1.3)$”, UMN, 49:2 (1994), 167–168

[9] V.A. Kalyagin, “Approksimatsii Ermita-Pade i spektralnyi analiz nesimmetrichnykh operatorov”, Matem. sb., 185:6 (1994), 79–100

[10] A.I. Aptekarev, V.A. Kalyagin, E.B. Saff, “Higher-order three-term recurrences and asymptotics of multiple orthogonal polynomials”, Constr. Approx., 30:2 (2009), 175–223 | DOI | MR | Zbl

[11] E. Daems, A.B.J. Kuijlaars, “Multiple orthogonal polynomials of mixed type and non-intersecting Brownian motions”, J. Approx. Theory, 146:1 (2007), 91–114 | DOI | MR | Zbl

[12] A.B.J. Kuijlaars, L. Zhang, “Singular values of products of Ginibre random matrices, multiple orthogonal polynomials and hard edge scalings”, Comm. Math. Phys., 332:2 (2014), 750–781 | DOI | MR

[13] E. Mukhin, A. Varchenko, “Multiple orthogonal polynomials and a counterexample to the Gaudin Bethe Ansatz conjecture”, Trans. Amer. Math. Soc., 359:11 (2007), 5383–5418 | DOI | MR | Zbl

[14] S.P. Suetin, “Polinomy Ermita–Pade i kvadratichnye approksimatsii Shafera dlya mnogoznachnykh analiticheskikh funktsii”, Uspekhi matem. nauk, 75:4 (454) (2020), 213–214 | Zbl

[15] N.R. Ikonomov, S.P. Suetin, “Algoritm Viskovatova dlya polinomov Ermita–Pade ryada”, Matem. sb., 212:9 (2021), 94–118 | Zbl

[16] V.N. Sorokin, “Approksimatsii Ermita–Pade funktsii Veilya i ee proizvodnoi dlya diskretnykh mer”, Matem. sb., 211:10 (2020), 139–156 | Zbl