Polyorthogonal systems of functions
Problemy fiziki, matematiki i tehniki, no. 1 (2022), pp. 89-93.

Voir la notice de l'article provenant de la source Math-Net.Ru

This article introduces multiple analogs of determinants and Gram matrices, studies the possibility of constructing polyorthogonal systems of functions using the process of polyorthogonalization of an arbitrary finite subsystem of a linearly independent system of functions $\varphi=\{\varphi_0(x), \varphi_1(x), \dots, \varphi_n(x), \dots\}$ in Pre-Hilbert function spaces generated by measures $\mu_1,\dots,\mu_k$. The proven statements are a generalization of the Gram–Schmidt orthogonalization theorem.
Keywords: Padé approximations, normal index, perfect system, Gram determinant.
Mots-clés : polyorthogonal polynomials
@article{PFMT_2022_1_a13,
     author = {A. P. Starovoitov},
     title = {Polyorthogonal systems of functions},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {89--93},
     publisher = {mathdoc},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2022_1_a13/}
}
TY  - JOUR
AU  - A. P. Starovoitov
TI  - Polyorthogonal systems of functions
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2022
SP  - 89
EP  - 93
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2022_1_a13/
LA  - ru
ID  - PFMT_2022_1_a13
ER  - 
%0 Journal Article
%A A. P. Starovoitov
%T Polyorthogonal systems of functions
%J Problemy fiziki, matematiki i tehniki
%D 2022
%P 89-93
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2022_1_a13/
%G ru
%F PFMT_2022_1_a13
A. P. Starovoitov. Polyorthogonal systems of functions. Problemy fiziki, matematiki i tehniki, no. 1 (2022), pp. 89-93. http://geodesic.mathdoc.fr/item/PFMT_2022_1_a13/

[1] A.P. Starovoitov, N.V. Ryabchenko, “O yavnom vide poliortogonalnykh mnogochlenov”, Izvestiya vuzov. Matematika, 2021, no. 4, 80–89

[2] A.P. Starovoitov, N.V. Ryabchenko, “Analogi formuly Shmidta dlya poliortogonalnykh mnogochlenov pervogo tipa”, Matematicheskie zametki, 110:3 (2021), 424–433 | Zbl

[3] I.P. Natanson, Konstruktivnaya teoriya funktsii, GITTL, M.-L., 1949

[4] E. Schmidt, “Entwicklung willkürlicher Funktionen nach Systemen vorgeschriebener”, Math. Ann., 63 (1907), 433–476 | DOI | MR | Zbl

[5] I.P. Gram, “Ueber die Entwicklung reeller Funktionen in Reihen mittels der Methode der kleinsten Quadrate”, Journ. für Math., 94 (1883), 41–73 | MR

[6] E.M. Nikishin, V.N. Sorokin, Ratsionalnye approksimatsii i ortogonalnost, Nauka, M., 1988 | MR

[7] F. Beukers, “A note on the irrationality of $\zeta(1.2)$ and $\zeta(1.3)$”, Bull. London Math. Soc., 11 (1979), 268–272 | DOI | MR | Zbl

[8] V.N. Sorokin, “Approksimatsii Ermita–Pade dlya sistem Nikishina i irratsionalnost chisla $\zeta(1.3)$”, UMN, 49:2 (1994), 167–168

[9] V.A. Kalyagin, “Approksimatsii Ermita-Pade i spektralnyi analiz nesimmetrichnykh operatorov”, Matem. sb., 185:6 (1994), 79–100

[10] A.I. Aptekarev, V.A. Kalyagin, E.B. Saff, “Higher-order three-term recurrences and asymptotics of multiple orthogonal polynomials”, Constr. Approx., 30:2 (2009), 175–223 | DOI | MR | Zbl

[11] E. Daems, A.B.J. Kuijlaars, “Multiple orthogonal polynomials of mixed type and non-intersecting Brownian motions”, J. Approx. Theory, 146:1 (2007), 91–114 | DOI | MR | Zbl

[12] A.B.J. Kuijlaars, L. Zhang, “Singular values of products of Ginibre random matrices, multiple orthogonal polynomials and hard edge scalings”, Comm. Math. Phys., 332:2 (2014), 750–781 | DOI | MR

[13] E. Mukhin, A. Varchenko, “Multiple orthogonal polynomials and a counterexample to the Gaudin Bethe Ansatz conjecture”, Trans. Amer. Math. Soc., 359:11 (2007), 5383–5418 | DOI | MR | Zbl

[14] S.P. Suetin, “Polinomy Ermita–Pade i kvadratichnye approksimatsii Shafera dlya mnogoznachnykh analiticheskikh funktsii”, Uspekhi matem. nauk, 75:4 (454) (2020), 213–214 | Zbl

[15] N.R. Ikonomov, S.P. Suetin, “Algoritm Viskovatova dlya polinomov Ermita–Pade ryada”, Matem. sb., 212:9 (2021), 94–118 | Zbl

[16] V.N. Sorokin, “Approksimatsii Ermita–Pade funktsii Veilya i ee proizvodnoi dlya diskretnykh mer”, Matem. sb., 211:10 (2020), 139–156 | Zbl