Finite groups with given Schmidt subgroups
Problemy fiziki, matematiki i tehniki, no. 1 (2022), pp. 84-88.

Voir la notice de l'article provenant de la source Math-Net.Ru

Throughout the article, all groups are finite and $G$ always denotes a finite group. A subgroup $H$ of the group $G$ is called $\mathfrak{U}_p$-normal in $G$ ($p$ is a prime) if every chief factor of the group $G$ between $H^G$ and $H_G$ is either cyclic or a $p'$-group. In this article, we prove that if each Schmidt subgroup of the group $G$ is either subnormal or $\mathfrak{U}_p$-normal in $G$, then the derived subgroup $G'$ of $G$ is $p$-nilpotent. Some well-known results are generalized.
Keywords: finite group, nilpotent group, subnormal subgroup, $\mathfrak{U}_p$-normal subgroup, Schmidt group.
@article{PFMT_2022_1_a12,
     author = {V. M. Sel'kin and V. S. Zakrevskaya and N. S. Kosenok},
     title = {Finite groups with given {Schmidt} subgroups},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {84--88},
     publisher = {mathdoc},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2022_1_a12/}
}
TY  - JOUR
AU  - V. M. Sel'kin
AU  - V. S. Zakrevskaya
AU  - N. S. Kosenok
TI  - Finite groups with given Schmidt subgroups
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2022
SP  - 84
EP  - 88
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2022_1_a12/
LA  - ru
ID  - PFMT_2022_1_a12
ER  - 
%0 Journal Article
%A V. M. Sel'kin
%A V. S. Zakrevskaya
%A N. S. Kosenok
%T Finite groups with given Schmidt subgroups
%J Problemy fiziki, matematiki i tehniki
%D 2022
%P 84-88
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2022_1_a12/
%G ru
%F PFMT_2022_1_a12
V. M. Sel'kin; V. S. Zakrevskaya; N. S. Kosenok. Finite groups with given Schmidt subgroups. Problemy fiziki, matematiki i tehniki, no. 1 (2022), pp. 84-88. http://geodesic.mathdoc.fr/item/PFMT_2022_1_a12/

[1] B. Hu, J. Huang, A.N. Skiba, “Finite groups with only $\mathfrak{F}$-normal and $\mathfrak{F}$-abnormal subgroups”, J. Group Theory, 22:5 (2019), 915–926 | DOI | MR | Zbl

[2] R. Schmidt, Subgroup Lattices of Groups, Walter de Gruyter, Berlin, 1994, 572 pp. | MR | Zbl

[3] A.N. Skiba, “On sublattices of the subgroup lattice defined by formation Fitting sets”, J. Algebra, 550 (2020), 69–85 | DOI | MR | Zbl

[4] B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin–Heidelberg–New York, 1967, 796 pp. | MR | Zbl

[5] L.A. Shemetkov, Formatsii konechnykh grupp, Nauka, M., 1978, 272 pp. | MR

[6] L.A. Shemetkov, A.N. Skiba, Formatsii algebraicheskikh sistem, Nauka, M., 1989, 256 pp. | MR

[7] A. Ballester-Bolinehes, L.M. Ezquerro, Classes of Finite groups, Springer, Dordrecht, 2006 | MR

[8] B.H. Semenchuk, “Konechnye gruppy s sistemami minimalnykh ne $\mathfrak{F}$-podgrupp”, Podgruppovoe stroenie konechnykh grupp, Nauka i Tekhnika, Minsk, 1981, 138–149

[9] B.C. Monakhov, V.N. Knyagina, “O konechnykh gruppakh s nekotorymi subnormalnymi podgruppami Shmidta”, Sibirskii matematicheskii zhurnal, 45:6 (2004), 1316–1322 | Zbl

[10] V.A. Vedernikov, “Konechnye gruppy s subnormalnymi podgruppami Shmidta”, Algebra i logika, 46:6 (2007), 669–687 | Zbl

[11] I.V. Bliznets, V.M. Selkin, “Konechnye gruppy s modulyarnoi podgruppoi Shmidta”, Problemy fiziki, matematiki i tekhniki, 2019, no. 4 (41), 36–38

[12] Ts. Khuan, B. Xu, A.N. Skiba, “Konechnye gruppy so slabo subnormalnymi i chastichno subnormalnymi podgruppami”, Sibirskii matematicheskii zhurnal, 62:1 (2021), 201–220 | Zbl

[13] A.N. Skiba, “On a-subnormal and a-permutable subgroups of finite groups”, J. Algebra, 436 (2015), 1–16 | DOI | MR | Zbl

[14] J.C. Beidleman, A.N. Skiba, “On $\tau_\sigma$-quasinormal subgroups of finite groups”, J. group Theory, 20:5 (2017), 955–964 | DOI | MR

[15] K.A. Al-Sharo, A.N. Skiba, “On finite groups with $\sigma$-subnormal Schmidt subgroups”, Comm. Algebra, 45 (2017), 4158–4165 | DOI | MR | Zbl

[16] B. Hu, J. Huang, “On finite groups with generalized $\sigma$-subnormal Schmidt subgroups”, Comm. Algebra, 46:2 (2017), 1–8 | MR

[17] A.N. Skiba, “Some characterizations of finite $\sigma$-soluble P$\sigma$T-groups”, J. Algebra, 495:1 (2018), 114–129 | DOI | MR | Zbl

[18] A.N. Skiba, “On some classes of sublattices of the subgroup lattice”, J. Belarusian State Univ. Math. Informatics, 3 (2019), 35–47 | DOI | MR | Zbl

[19] W. Guo, A.N. Skiba, “Finite groups whose $n$-maximal subgroups are $\sigma$-subnormal”, Sci. China Math., 62 (2019), 1355–1372 | DOI | MR | Zbl

[20] A. Ballester-Bolinches, S.F. Kamornikov, M.C. Pedraza-Aguilera, V. Perez-Calabuig, “On $\sigma$-subnormality criteria in finite $\sigma$-soluble groups”, RACSAM, 114:94 (2020) | DOI | MR | Zbl

[21] A. Ballester-Bolinches, S.F. Kamornikov, M.C. Pedraza-Aguilera, X. Yi, “On $\sigma$-subnormal subgroups of factorised finite groups”, J. Algebra, 559 (2020), 195–202 | DOI | MR | Zbl

[22] X. Yi, S.F. Kamornikov, “Finite groups with $\sigma$-subnormal Schmidt subgroups”, J. Algebra, 560 (2020), 181–191 | DOI | MR | Zbl

[23] S.F. Kamornikov, V.N. Tyutyanov, “On $\sigma$-subnormal subgroups of finite groups”, Siberian Math. J., 60:2 (2020), 337–343 | MR

[24] S.F. Kamornikov, V.N. Tyutyanov, “On $\sigma$-subnormal subgroups of finite $3'$-groups”, Ukranian Math. J., 72:6 (2020), 806–811 | DOI | MR | Zbl

[25] Z. Chi, A.N. Skiba, “On a lattice characterization of finite soluble PST-groups”, Bulletin of the Australian Mathematical Society, 101:2 (2020), 247–254 | DOI | MR | Zbl

[26] K. Doerk, T. Hawkes, Finite Soluble groups, Walter de Gruyter, Berlin-New York, 1992 | MR

[27] A.N. Skiba, Finite groups with abnormal Schmidt subgroup, Preprint, 2021 | MR