On supersolvability of a finite group with $Z$-supplements to the normalizers of Sylow subgroups
Problemy fiziki, matematiki i tehniki, no. 1 (2022), pp. 74-77.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a finite group in which the normalizer of each Sylow subgroup has a Hall supplement with cyclic Sylow subgroups. In particular, it is established that such groups are supersoluble.
Keywords: finite group, Sylow subgroup, normalizer, cyclic subgroup, supplement.
@article{PFMT_2022_1_a10,
     author = {V. S. Monakhov and I. K. Chirik},
     title = {On supersolvability of a finite group with $Z$-supplements to the normalizers of {Sylow} subgroups},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {74--77},
     publisher = {mathdoc},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2022_1_a10/}
}
TY  - JOUR
AU  - V. S. Monakhov
AU  - I. K. Chirik
TI  - On supersolvability of a finite group with $Z$-supplements to the normalizers of Sylow subgroups
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2022
SP  - 74
EP  - 77
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2022_1_a10/
LA  - ru
ID  - PFMT_2022_1_a10
ER  - 
%0 Journal Article
%A V. S. Monakhov
%A I. K. Chirik
%T On supersolvability of a finite group with $Z$-supplements to the normalizers of Sylow subgroups
%J Problemy fiziki, matematiki i tehniki
%D 2022
%P 74-77
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2022_1_a10/
%G ru
%F PFMT_2022_1_a10
V. S. Monakhov; I. K. Chirik. On supersolvability of a finite group with $Z$-supplements to the normalizers of Sylow subgroups. Problemy fiziki, matematiki i tehniki, no. 1 (2022), pp. 74-77. http://geodesic.mathdoc.fr/item/PFMT_2022_1_a10/

[1] V.S. Monakhov, Vvedenie v teoriyu konechnykh grupp i ikh klassov, Vysheishaya shkola, Minsk, 2006, 207 pp.

[2] L.A. Shemetkov, Formatsii konechnykh grupp, Nauka, M., 1978, 271 pp. | MR

[3] V.A. Vedernikov, “O priznakakh razreshimosti i sverkhrazreshimosti konechnykh grupp”, Sibirskii matematicheskii zhurnal, 8:6 (1967), 1236–1244

[4] W. Guo, K.P. Shum, “A note on finite groups whose normalizers of Sylow 2-, 3-sugroups are prime power indices”, J. Applied Algebra and Discrete Structures, 3:1 (2005), 1–9 | MR

[5] D. Buchthal, “On factorized groups”, Trans. Amer. Math. Soc., 183 (1973), 423–430 | DOI | MR | Zbl

[6] D. Perin, “Finite groups with nicely supplemented Sylow normalizers”, Trans. Amer. Math. Soc., 183 (1973), 431–435 | DOI | MR | Zbl

[7] J. Zhang, “Sylow numbers of finite groups”, J. Algebra, 176 (1995), 111–123 | DOI | MR | Zbl

[8] Venbin Go, “Konechnye gruppy s zadannymi indeksami normalizatorov silovskikh podgrupp”, Sibirskii matematicheskii zhurnal, 37:2 (1996), 295–300 | Zbl

[9] N. Chigiram, “Numbers of Sylow subgroups and p-nilpotency of finite groups”, J. Algebra, 201:1 (1998), 71–85 | DOI | MR

[10] V.S. Monakhov, “Konechnye gruppy s khollovymi dobavleniyami k primitivnym podgruppam”, Sibirskii matematicheskii zhurnal, 48:2 (2007), 359–368 | Zbl

[11] V.S. Monakhov, T.V. Borodich, “O razreshimosti gruppy s khollovymi dobavleniyami k normalizatoram silovskikh podgrupp”, Matematicheskie zametki, 85:2 (2009), 227–233 | Zbl

[12] B. Li, V. Go, Kh. Tszyankhun, “Konechnye gruppy, v kotorykh normalizatory silovskikh podgrupp imeyut nilpotentnye khollovy dobavleniya”, Sibirskii matematicheskii zhurnal, 50:4 (2009), 841–849

[13] B. Huppert, Endliche Gruppen I, Springer, Berlin–Heidelberg–New York, 1967, 793 pp. | MR | Zbl

[14] A system for computational discrete algebra, Ver. GAP 4.11.0, The GAP Group: GAP – Groups, Algorithms, and Programming (Date of Access: 29.02.2020) https://www.gap-system.org

[15] A.S. Kondratev, “Kriterii 2-nilpotentnosti konechnykh grupp”, Podgruppovaya struktura grupp, UrO AN SSSR, Sverdlovsk, 1988, 82–84