Optimization of the parameters of laser splitting of quartz glass
Problemy fiziki, matematiki i tehniki, no. 4 (2021), pp. 21-28.

Voir la notice de l'article provenant de la source Math-Net.Ru

The parameters of laser splitting of quartz plates are optimized. Optimization calculations were carried out using the genetic algorithm MOGA, implemented in the ANSYS Workbench program.
Keywords: laser splitting, quartz plate, genetic algorithm MOGA, software system of finite element analysis ANSYS.
@article{PFMT_2021_4_a3,
     author = {Y. V. Nikitjuk and A. N. Serdyukov and I. Y. Aushev},
     title = {Optimization of the parameters of laser splitting of quartz glass},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {21--28},
     publisher = {mathdoc},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2021_4_a3/}
}
TY  - JOUR
AU  - Y. V. Nikitjuk
AU  - A. N. Serdyukov
AU  - I. Y. Aushev
TI  - Optimization of the parameters of laser splitting of quartz glass
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2021
SP  - 21
EP  - 28
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2021_4_a3/
LA  - ru
ID  - PFMT_2021_4_a3
ER  - 
%0 Journal Article
%A Y. V. Nikitjuk
%A A. N. Serdyukov
%A I. Y. Aushev
%T Optimization of the parameters of laser splitting of quartz glass
%J Problemy fiziki, matematiki i tehniki
%D 2021
%P 21-28
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2021_4_a3/
%G ru
%F PFMT_2021_4_a3
Y. V. Nikitjuk; A. N. Serdyukov; I. Y. Aushev. Optimization of the parameters of laser splitting of quartz glass. Problemy fiziki, matematiki i tehniki, no. 4 (2021), pp. 21-28. http://geodesic.mathdoc.fr/item/PFMT_2021_4_a3/

[1] V. I. Arbuzov, Osnovy radiatsionnogo opticheskogo materialovedeniya, SPb GU ITMO, Sankt-Peterburg, 2008, 284 pp.

[2] V.E. Borisovskii, Razvitie teorii i razrabotka kompleksa tekhnologii i oborudovaniya dlya lazernoi obrabotki kvartsevogo stekla, avtoref. dis. dokt. tekhn. nauk: 05.11.14, MGUPI, M., 2011, 36 pp.

[3] G.A. Machulka, Lazernaya obrabotka stekla, Sov. radio, M., 1979, 136 pp.

[4] V.S. Kondratenko, Sposob rezki nemetallicheskikh materialov, pat. 2024441 RF, MKI 5 C03B33/02, zayavl. 04.02.92, opubl. 12.15.94

[5] S. Nisar, “Laser glass cutting techniques — A review”, Journal of laser applications, 25:4 (2013), 042010, 11 pp. | DOI

[6] P.D. Gindin, Razrabotka novykh tekhnologii i oborudovaniya na osnove metoda lazernogo upravlyaemogo termoraskalyvaniya dlya obrabotki detalei priborostroeniya, mikro- i optoelektroniki, avtoref. dis. dokt. tekhn. nauk: 05.11.14, MGUPI, M., 2009, 43 pp.

[7] S.V. Shalupaev, Termouprugie polya, formiruemye v tverdykh telakh svetovymi i zvukovymi potokami, dis. ... kand. fiz.-mat. nauk: 01.04.05, Minsk, 1987, 157 pp.

[8] E.B. Shershnev, Razrabotka i vnedrenie novykh effektivnykh protsessov v proizvodstvo stekloizdelii s primeneniem lazernoi tekhnologii, dis. ... kand. tekhn. nauk: 05.17.11, M., 1990, 145 pp.

[9] Yu.V. Nikityuk, Fizicheskie zakonomernosti lazernogo termoraskalyvaniya silikatnykh stekol i alyumooksidnoi keramiki, dis. ... kand. fiz.-mat. nauk: 01.04.21, Gomel, 2009, 165 pp.

[10] S.V. Shalupaev, A.V. Semchenko, Y.V. Nikitjuk, “Silica gel glasses after laser radiation”, Material Science, 21:4 (2003), 495–501

[11] E.B. Shershnev, Yu.V. Nikityuk, S.I. Sokolov, “Osobennosti lazernogo raskalyvaniya kvartsevogo stekla”, Problemy fiziki, matematiki i tekhniki, 2013, no. 3 (16), 39–44

[12] A.P. Dostanko i dr., Innovatsionnye tekhnologii i oborudovanie submikronnoi elektroniki, ed. A.P. Dostanko, Belaruskaya navuka, Minsk, 2020, 260 pp.

[13] P. Parandoush, A. Hossain, “A review of modeling and simulation of laser beam machining”, International Journal of Machine Tools and Manufacture, 85 (2014), 135–145 | DOI

[14] V.V. Emelyanov, V.V. Kureichik, V.M. Kureichik, Teoriya i praktika evolyutsionnogo modelirovaniya, Fizmatlit, M., 2003, 432 pp.

[15] S.V. Krasnovskaya, V.V. Naprasnikov, “Obzor vozmozhnostei optimizatsionnykh algoritmov pri modelirovanii konstruktsii kompressorno-kondensatornykh agregatov metodom konechnykh elementov”, Vestsi Natsyyanalnai akademii navuk Belarusi. Seryya fizika-tekhnichnykh navuk, 2016, no. 2, 92–98

[16] S. Wu, J. Xing, L. Dong, H. Zhu, “Multi-Objective Optimization of Microstructure of Gravure Cell Based on Response Surface Method”, Processes, 9:2 (2021), 403 | DOI

[17] J. Grififths, C. Dowding, “Optimization of process parameters in laser transmission welding for food packaging applications”, Procedia CIRP, 74 (2018), 528–532 | DOI

[18] G. Grebenişan, N. Salem, “The multi-objective genetic algorithm optimization, of a superplastic forming process, using ansys”, MATEC Web of Conferences, 126 (2017), 03003 | DOI

[19] K.V. Kruzhaev, D.P. Shmatov, K.V. Zubarev, I.G. Perevezentsev, “Opredelenie optimizatsionnykh podkhodov pri proektirovanii sistemy okhlazhdeniya gazovogo termoelektricheskogo generatornogo modulya”, Vestnik Voronezhskogo gosudarstvennogo tekhnicheskogo universiteta, 14:3 (2018), 93–100

[20] E.E. Spitsina, Identifikatsiya kholodoproizvoditelnosti i teplootdachi nyutonovskogo teplonositelya v bloke termoelektricheskogo okhlazhdeniya, dis. kand. tekhn. nauk: 01.04.14, Voronezh, 2019, 138 pp.

[21] R.E. Steuer, Multiple Criteria Optimization: Theory, Computations, and Application, John Wiley Sons, Inc., New York, 1986

[22] C. Fonsecay, P. Flemingz, “Genetic algorithms for multiobjective optimization: Formulation discussion and generalization”, Proceedings of The 5th International Conference on Genetic Algorithms, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1993, 416–423

[23] S.V. Groshev, A.P. Karpenko, V.A. Martynyuk, “Effektivnost populyatsionnykh algoritmov Pareto-approksimatsii. Eksperimentalnoe sravnenie”, Internet-zhurnal «NAUKOVEDENIE», 8:4 (2016) | DOI

[24] A.S. Shalumov i dr., Vvedenie v ANSYS: prochnostnoi i teplovoi analiz, uchebnoe posobie, KGTA, Kovrov, 2002, 52 pp.

[25] L.D. Kovalenko, Osnovy termouprugosti, Naukova dumka, Kiev, 1970, 307 pp.

[26] A.A. Apen i dr., Steklo, ed. N.M. Pavlushkin, Stroiizdat, M., 1973, 487 pp.

[27] G.P. Karzov, B.Z. Margolin, V.A. Shevtsova, Fiziko-mekhanicheskoe modelirovanie protsessov razrusheniya, Politekhnika, Sankt-Peterburg, 1993, 391 pp.

[28] V.A. Levin, E.M. Morozov, Yu.G. Matvienko, Izbrannye nelineinye zadachi mekhaniki razrusheniya, Fizmatlit, M., 2004, 408 pp.

[29] A.P. Morgunov, I.V. Revina, Planirovanie i analiz rezultatov eksperimenta, uchebnoe posobie, Minobrnauki Rossii, OmGTU, Izd-vo OmGTU, Omsk, 2014, 343 pp.

[30] Yu.P. Adler, E.V. Markova, Yu.V. Granovskii, Planirovanie eksperimenta pri poiske optimalnykh uslovii, Nauka, M., 1976, 278 pp.

[31] S.V. Karpushkin, A.O. Glebov, Teoriya inzhenernogo eksperimenta, uchebnoe posobie dlya studentov dnevnogo i zaochnogo otdeleniya, obuchayuschikhsya po napravleniyam 15.04.01 «Mashinostroenie», 15.04.05 «Konstruktorsko-tekhnologicheskoe obespechenie mashinostroitelnykh proizvodstv», FGBOU VO «Tambovskii gosudarstvennyi tekhnicheskii universitet», Tambov, 2017, 81 pp.