Optimization of the parameters of laser splitting of quartz glass
Problemy fiziki, matematiki i tehniki, no. 4 (2021), pp. 21-28 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The parameters of laser splitting of quartz plates are optimized. Optimization calculations were carried out using the genetic algorithm MOGA, implemented in the ANSYS Workbench program.
Keywords: laser splitting, quartz plate, genetic algorithm MOGA, software system of finite element analysis ANSYS.
@article{PFMT_2021_4_a3,
     author = {Y. V. Nikitjuk and A. N. Serdyukov and I. Y. Aushev},
     title = {Optimization of the parameters of laser splitting of quartz glass},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {21--28},
     year = {2021},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2021_4_a3/}
}
TY  - JOUR
AU  - Y. V. Nikitjuk
AU  - A. N. Serdyukov
AU  - I. Y. Aushev
TI  - Optimization of the parameters of laser splitting of quartz glass
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2021
SP  - 21
EP  - 28
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/PFMT_2021_4_a3/
LA  - ru
ID  - PFMT_2021_4_a3
ER  - 
%0 Journal Article
%A Y. V. Nikitjuk
%A A. N. Serdyukov
%A I. Y. Aushev
%T Optimization of the parameters of laser splitting of quartz glass
%J Problemy fiziki, matematiki i tehniki
%D 2021
%P 21-28
%N 4
%U http://geodesic.mathdoc.fr/item/PFMT_2021_4_a3/
%G ru
%F PFMT_2021_4_a3
Y. V. Nikitjuk; A. N. Serdyukov; I. Y. Aushev. Optimization of the parameters of laser splitting of quartz glass. Problemy fiziki, matematiki i tehniki, no. 4 (2021), pp. 21-28. http://geodesic.mathdoc.fr/item/PFMT_2021_4_a3/

[1] V. I. Arbuzov, Osnovy radiatsionnogo opticheskogo materialovedeniya, SPb GU ITMO, Sankt-Peterburg, 2008, 284 pp.

[2] V.E. Borisovskii, Razvitie teorii i razrabotka kompleksa tekhnologii i oborudovaniya dlya lazernoi obrabotki kvartsevogo stekla, avtoref. dis. dokt. tekhn. nauk: 05.11.14, MGUPI, M., 2011, 36 pp.

[3] G.A. Machulka, Lazernaya obrabotka stekla, Sov. radio, M., 1979, 136 pp.

[4] V.S. Kondratenko, Sposob rezki nemetallicheskikh materialov, pat. 2024441 RF, MKI 5 C03B33/02, zayavl. 04.02.92, opubl. 12.15.94

[5] S. Nisar, “Laser glass cutting techniques — A review”, Journal of laser applications, 25:4 (2013), 042010, 11 pp. | DOI

[6] P.D. Gindin, Razrabotka novykh tekhnologii i oborudovaniya na osnove metoda lazernogo upravlyaemogo termoraskalyvaniya dlya obrabotki detalei priborostroeniya, mikro- i optoelektroniki, avtoref. dis. dokt. tekhn. nauk: 05.11.14, MGUPI, M., 2009, 43 pp.

[7] S.V. Shalupaev, Termouprugie polya, formiruemye v tverdykh telakh svetovymi i zvukovymi potokami, dis. ... kand. fiz.-mat. nauk: 01.04.05, Minsk, 1987, 157 pp.

[8] E.B. Shershnev, Razrabotka i vnedrenie novykh effektivnykh protsessov v proizvodstvo stekloizdelii s primeneniem lazernoi tekhnologii, dis. ... kand. tekhn. nauk: 05.17.11, M., 1990, 145 pp.

[9] Yu.V. Nikityuk, Fizicheskie zakonomernosti lazernogo termoraskalyvaniya silikatnykh stekol i alyumooksidnoi keramiki, dis. ... kand. fiz.-mat. nauk: 01.04.21, Gomel, 2009, 165 pp.

[10] S.V. Shalupaev, A.V. Semchenko, Y.V. Nikitjuk, “Silica gel glasses after laser radiation”, Material Science, 21:4 (2003), 495–501

[11] E.B. Shershnev, Yu.V. Nikityuk, S.I. Sokolov, “Osobennosti lazernogo raskalyvaniya kvartsevogo stekla”, Problemy fiziki, matematiki i tekhniki, 2013, no. 3 (16), 39–44

[12] A.P. Dostanko i dr., Innovatsionnye tekhnologii i oborudovanie submikronnoi elektroniki, ed. A.P. Dostanko, Belaruskaya navuka, Minsk, 2020, 260 pp.

[13] P. Parandoush, A. Hossain, “A review of modeling and simulation of laser beam machining”, International Journal of Machine Tools and Manufacture, 85 (2014), 135–145 | DOI

[14] V.V. Emelyanov, V.V. Kureichik, V.M. Kureichik, Teoriya i praktika evolyutsionnogo modelirovaniya, Fizmatlit, M., 2003, 432 pp.

[15] S.V. Krasnovskaya, V.V. Naprasnikov, “Obzor vozmozhnostei optimizatsionnykh algoritmov pri modelirovanii konstruktsii kompressorno-kondensatornykh agregatov metodom konechnykh elementov”, Vestsi Natsyyanalnai akademii navuk Belarusi. Seryya fizika-tekhnichnykh navuk, 2016, no. 2, 92–98

[16] S. Wu, J. Xing, L. Dong, H. Zhu, “Multi-Objective Optimization of Microstructure of Gravure Cell Based on Response Surface Method”, Processes, 9:2 (2021), 403 | DOI

[17] J. Grififths, C. Dowding, “Optimization of process parameters in laser transmission welding for food packaging applications”, Procedia CIRP, 74 (2018), 528–532 | DOI

[18] G. Grebenişan, N. Salem, “The multi-objective genetic algorithm optimization, of a superplastic forming process, using ansys”, MATEC Web of Conferences, 126 (2017), 03003 | DOI

[19] K.V. Kruzhaev, D.P. Shmatov, K.V. Zubarev, I.G. Perevezentsev, “Opredelenie optimizatsionnykh podkhodov pri proektirovanii sistemy okhlazhdeniya gazovogo termoelektricheskogo generatornogo modulya”, Vestnik Voronezhskogo gosudarstvennogo tekhnicheskogo universiteta, 14:3 (2018), 93–100

[20] E.E. Spitsina, Identifikatsiya kholodoproizvoditelnosti i teplootdachi nyutonovskogo teplonositelya v bloke termoelektricheskogo okhlazhdeniya, dis. kand. tekhn. nauk: 01.04.14, Voronezh, 2019, 138 pp.

[21] R.E. Steuer, Multiple Criteria Optimization: Theory, Computations, and Application, John Wiley Sons, Inc., New York, 1986

[22] C. Fonsecay, P. Flemingz, “Genetic algorithms for multiobjective optimization: Formulation discussion and generalization”, Proceedings of The 5th International Conference on Genetic Algorithms, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1993, 416–423

[23] S.V. Groshev, A.P. Karpenko, V.A. Martynyuk, “Effektivnost populyatsionnykh algoritmov Pareto-approksimatsii. Eksperimentalnoe sravnenie”, Internet-zhurnal «NAUKOVEDENIE», 8:4 (2016) | DOI

[24] A.S. Shalumov i dr., Vvedenie v ANSYS: prochnostnoi i teplovoi analiz, uchebnoe posobie, KGTA, Kovrov, 2002, 52 pp.

[25] L.D. Kovalenko, Osnovy termouprugosti, Naukova dumka, Kiev, 1970, 307 pp.

[26] A.A. Apen i dr., Steklo, ed. N.M. Pavlushkin, Stroiizdat, M., 1973, 487 pp.

[27] G.P. Karzov, B.Z. Margolin, V.A. Shevtsova, Fiziko-mekhanicheskoe modelirovanie protsessov razrusheniya, Politekhnika, Sankt-Peterburg, 1993, 391 pp.

[28] V.A. Levin, E.M. Morozov, Yu.G. Matvienko, Izbrannye nelineinye zadachi mekhaniki razrusheniya, Fizmatlit, M., 2004, 408 pp.

[29] A.P. Morgunov, I.V. Revina, Planirovanie i analiz rezultatov eksperimenta, uchebnoe posobie, Minobrnauki Rossii, OmGTU, Izd-vo OmGTU, Omsk, 2014, 343 pp.

[30] Yu.P. Adler, E.V. Markova, Yu.V. Granovskii, Planirovanie eksperimenta pri poiske optimalnykh uslovii, Nauka, M., 1976, 278 pp.

[31] S.V. Karpushkin, A.O. Glebov, Teoriya inzhenernogo eksperimenta, uchebnoe posobie dlya studentov dnevnogo i zaochnogo otdeleniya, obuchayuschikhsya po napravleniyam 15.04.01 «Mashinostroenie», 15.04.05 «Konstruktorsko-tekhnologicheskoe obespechenie mashinostroitelnykh proizvodstv», FGBOU VO «Tambovskii gosudarstvennyi tekhnicheskii universitet», Tambov, 2017, 81 pp.