On one-generated and bounded totally $\omega$-composition formations of finite groups
Problemy fiziki, matematiki i tehniki, no. 4 (2021), pp. 101-107.

Voir la notice de l'article provenant de la source Math-Net.Ru

All considered groups are finite. Let $G$ be a group. Then $c_{\infty}^\omega\mathrm{form}(G)$ denotes the intersection of all totally $\omega$-composition formations containing $G$. The formation $c_{\infty}^\omega\mathrm{form}(G)$ is called a totally $\omega$-composition formation generated by $G$ or a one-generated totally $\omega$-composition formation. A totally $\omega$-composition formation $\mathfrak{F}$ is called a bounded, if $\mathfrak{F}$ is a subformation of some one-generated totally $\omega$-composition formation, that is, $\mathfrak{F}\subseteq c_{\infty}^\omega\mathrm{form}(G)$ for some group $G$. In this paper, criteria for the one-generation (boundedness) of a totally $\omega$-composition formation are obtained.
Keywords: formation of finite groups, one-generated formation, bounded formation, totally $\omega$-composition formation.
Mots-clés : $\omega$-composition formation
@article{PFMT_2021_4_a16,
     author = {I. P. Los and V. G. Safonov},
     title = {On one-generated and bounded totally $\omega$-composition formations of finite groups},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {101--107},
     publisher = {mathdoc},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2021_4_a16/}
}
TY  - JOUR
AU  - I. P. Los
AU  - V. G. Safonov
TI  - On one-generated and bounded totally $\omega$-composition formations of finite groups
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2021
SP  - 101
EP  - 107
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2021_4_a16/
LA  - ru
ID  - PFMT_2021_4_a16
ER  - 
%0 Journal Article
%A I. P. Los
%A V. G. Safonov
%T On one-generated and bounded totally $\omega$-composition formations of finite groups
%J Problemy fiziki, matematiki i tehniki
%D 2021
%P 101-107
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2021_4_a16/
%G ru
%F PFMT_2021_4_a16
I. P. Los; V. G. Safonov. On one-generated and bounded totally $\omega$-composition formations of finite groups. Problemy fiziki, matematiki i tehniki, no. 4 (2021), pp. 101-107. http://geodesic.mathdoc.fr/item/PFMT_2021_4_a16/

[1] A.N. Skiba, L.A. Shemetkov, “Kratno $\mathfrak{L}$-kompozitsionnye formatsii konechnykh grupp”, Ukrainskii matematicheskii zhurnal, 52:6 (2000), 783–797 | Zbl

[2] L.A. Shemetkov, A.N. Skiba, Formatsii algebraicheskikh sistem, Nauka, M., 1989

[3] A.N. Skiba, Algebra formatsii, Belaruskaya navuka, Minsk, 1997

[4] V.M. Selkin, Odnoporozhdennye formatsii, GGU im. F. Skoriny, Gomel, 2011

[5] N.N. Vorobev, Algebra klassov konechnykh grupp, VGU im. P.M. Masherova, Vitebsk, 2012

[6] V.V. Scherbina, “O dvukh zadachakh teorii chastichno totalno kompozitsionnykh formatsii konechnykh grupp”, Prikladnaya matematika Fizika, 52:1 (2020), 18–32 | DOI | Zbl

[7] I.P. Los, V.G. Safonov, “$\tau$-Zamknutye totalno $\omega$-kompozitsionnye formatsii konechnykh grupp s bulevymi podreshetkami”, Materialy Mezhdunarodnoi konferentsii po algebre, analizu i geometrii, Trudy Matematicheskogo tsentra imeni N. I. Lobachevskogo, 60, Izd-vo Akademii nauk RT, Kazan, 2021, 92–94

[8] A.A. Tsarev, “Inductive lattices of totally composition formations”, Revista Colombiana de Matematicas, 52:2 (2018), 161–169 | DOI | MR | Zbl

[9] A.A. Tsarev, “On the lattice of all totally composition formations of finite groups”, Ricerche di Matematica, 68:2 (2019), 693–698 | DOI | MR | Zbl

[10] A.A. Tsarev, “On the lattice of all totally composition formations of finite groups”, Ricerche Mat., 68:2 (2019), 693–698 | DOI | MR | Zbl

[11] I.P. Los, V.G. Safonov, “Separability of the lattice of $\tau$-closed totally $\omega$-composition formations of finite groups”, The XII International Algebraic Conference in Ukraine dedicated to the 215th anniversary of V. Bunyakovsky (July 02–06, 2019, Vinnytsia, Ukraine), 2019, 64–65

[12] I.P. Los, V.G. Safonov, “Modulyarnost reshetki $\tau$-zamknutykh totalno $\omega$-kompozitsionnykh formatsii konechnykh grupp”, XIII shkola-konferentsiya po teorii grupp, posvyaschennaya 85-letiyu V. A. Belonogova (3–7 avgusta 2020, Ekaterinburg), 2020, 62–63

[13] I.P. Los, V.G. Safonov, “On sublattices of the lattice of all totally $\omega$-composition formations of finite groups”, Mezhdunarodnaya matematicheskaya konferentsiya «Maltsevskie chteniya», posvyaschennaya 80-letiyu Yu. L. Ershova (16–20 noyabrya 2020, Novosibirsk), 2020, 178

[14] V.V. Scherbina, “Chastichno kompozitsionnye formatsii s zadannoi strukturoi. I”, Prikladnaya matematika Fizika, 53:3 (2021), 171–204

[15] A.N. Skiba, L.A. Shemetkov, “O minimalnom kompozitsionnom ekrane kompozitsionnoi formatsii”, Voprosy algebry, 1992, no. 7, 39–43

[16] L.A. Shemetkov, “Frattini extensions of finite groups and formations”, Comm. Algebra, 25:3 (1997), 955–964 | DOI | MR | Zbl

[17] L.A. Shemetkov, “Lokalnye zadaniya formatsii konechnykh grupp”, Fundamentalnaya i prikladnaya matematika, 16:8 (2010), 229–244

[18] K. Doerk, T. Hawkes, Finite Soluble Groups, Walter de Gruyter, Berlin–New York, 1992

[19] A. Ballester-Bolinches, L.M. Ezquerro, Classes of Finite Groups, Springer, Dordrecht, 2006 | Zbl