Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2021_4_a16, author = {I. P. Los and V. G. Safonov}, title = {On one-generated and bounded totally $\omega$-composition formations of finite groups}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {101--107}, publisher = {mathdoc}, number = {4}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PFMT_2021_4_a16/} }
TY - JOUR AU - I. P. Los AU - V. G. Safonov TI - On one-generated and bounded totally $\omega$-composition formations of finite groups JO - Problemy fiziki, matematiki i tehniki PY - 2021 SP - 101 EP - 107 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PFMT_2021_4_a16/ LA - ru ID - PFMT_2021_4_a16 ER -
I. P. Los; V. G. Safonov. On one-generated and bounded totally $\omega$-composition formations of finite groups. Problemy fiziki, matematiki i tehniki, no. 4 (2021), pp. 101-107. http://geodesic.mathdoc.fr/item/PFMT_2021_4_a16/
[1] A.N. Skiba, L.A. Shemetkov, “Kratno $\mathfrak{L}$-kompozitsionnye formatsii konechnykh grupp”, Ukrainskii matematicheskii zhurnal, 52:6 (2000), 783–797 | Zbl
[2] L.A. Shemetkov, A.N. Skiba, Formatsii algebraicheskikh sistem, Nauka, M., 1989
[3] A.N. Skiba, Algebra formatsii, Belaruskaya navuka, Minsk, 1997
[4] V.M. Selkin, Odnoporozhdennye formatsii, GGU im. F. Skoriny, Gomel, 2011
[5] N.N. Vorobev, Algebra klassov konechnykh grupp, VGU im. P.M. Masherova, Vitebsk, 2012
[6] V.V. Scherbina, “O dvukh zadachakh teorii chastichno totalno kompozitsionnykh formatsii konechnykh grupp”, Prikladnaya matematika Fizika, 52:1 (2020), 18–32 | DOI | Zbl
[7] I.P. Los, V.G. Safonov, “$\tau$-Zamknutye totalno $\omega$-kompozitsionnye formatsii konechnykh grupp s bulevymi podreshetkami”, Materialy Mezhdunarodnoi konferentsii po algebre, analizu i geometrii, Trudy Matematicheskogo tsentra imeni N. I. Lobachevskogo, 60, Izd-vo Akademii nauk RT, Kazan, 2021, 92–94
[8] A.A. Tsarev, “Inductive lattices of totally composition formations”, Revista Colombiana de Matematicas, 52:2 (2018), 161–169 | DOI | MR | Zbl
[9] A.A. Tsarev, “On the lattice of all totally composition formations of finite groups”, Ricerche di Matematica, 68:2 (2019), 693–698 | DOI | MR | Zbl
[10] A.A. Tsarev, “On the lattice of all totally composition formations of finite groups”, Ricerche Mat., 68:2 (2019), 693–698 | DOI | MR | Zbl
[11] I.P. Los, V.G. Safonov, “Separability of the lattice of $\tau$-closed totally $\omega$-composition formations of finite groups”, The XII International Algebraic Conference in Ukraine dedicated to the 215th anniversary of V. Bunyakovsky (July 02–06, 2019, Vinnytsia, Ukraine), 2019, 64–65
[12] I.P. Los, V.G. Safonov, “Modulyarnost reshetki $\tau$-zamknutykh totalno $\omega$-kompozitsionnykh formatsii konechnykh grupp”, XIII shkola-konferentsiya po teorii grupp, posvyaschennaya 85-letiyu V. A. Belonogova (3–7 avgusta 2020, Ekaterinburg), 2020, 62–63
[13] I.P. Los, V.G. Safonov, “On sublattices of the lattice of all totally $\omega$-composition formations of finite groups”, Mezhdunarodnaya matematicheskaya konferentsiya «Maltsevskie chteniya», posvyaschennaya 80-letiyu Yu. L. Ershova (16–20 noyabrya 2020, Novosibirsk), 2020, 178
[14] V.V. Scherbina, “Chastichno kompozitsionnye formatsii s zadannoi strukturoi. I”, Prikladnaya matematika Fizika, 53:3 (2021), 171–204
[15] A.N. Skiba, L.A. Shemetkov, “O minimalnom kompozitsionnom ekrane kompozitsionnoi formatsii”, Voprosy algebry, 1992, no. 7, 39–43
[16] L.A. Shemetkov, “Frattini extensions of finite groups and formations”, Comm. Algebra, 25:3 (1997), 955–964 | DOI | MR | Zbl
[17] L.A. Shemetkov, “Lokalnye zadaniya formatsii konechnykh grupp”, Fundamentalnaya i prikladnaya matematika, 16:8 (2010), 229–244
[18] K. Doerk, T. Hawkes, Finite Soluble Groups, Walter de Gruyter, Berlin–New York, 1992
[19] A. Ballester-Bolinches, L.M. Ezquerro, Classes of Finite Groups, Springer, Dordrecht, 2006 | Zbl