Finite groups with subnormal derived subgroups of $B$-groups
Problemy fiziki, matematiki i tehniki, no. 3 (2021), pp. 73-75.

Voir la notice de l'article provenant de la source Math-Net.Ru

A finite non-nilpotent group $G$ is called $B$-group if every proper subgroup of the quotient group $G /\Phi(G)$ is nilpotent. In this paper, it is established that the metanilpotency of a finite group for which the derived subgroup of each $B$-subgroup is subnormal.
Keywords: finite group, subnormal subgroup, derived subgroup.
Mots-clés : $B$-group
@article{PFMT_2021_3_a9,
     author = {V. N. Kniahina},
     title = {Finite groups with subnormal derived subgroups of $B$-groups},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {73--75},
     publisher = {mathdoc},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2021_3_a9/}
}
TY  - JOUR
AU  - V. N. Kniahina
TI  - Finite groups with subnormal derived subgroups of $B$-groups
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2021
SP  - 73
EP  - 75
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2021_3_a9/
LA  - ru
ID  - PFMT_2021_3_a9
ER  - 
%0 Journal Article
%A V. N. Kniahina
%T Finite groups with subnormal derived subgroups of $B$-groups
%J Problemy fiziki, matematiki i tehniki
%D 2021
%P 73-75
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2021_3_a9/
%G ru
%F PFMT_2021_3_a9
V. N. Kniahina. Finite groups with subnormal derived subgroups of $B$-groups. Problemy fiziki, matematiki i tehniki, no. 3 (2021), pp. 73-75. http://geodesic.mathdoc.fr/item/PFMT_2021_3_a9/

[1] O.Yu. Shmidt, “Gruppy, vse podgruppy kotorykh spetsialnye”, Matem. sb., 31 (1924), 366–372

[2] V.N. Semenchuk, “Minimalnye ne $\mathfrak{F}$-gruppy”, Algebra i logika, 18:3 (1979), 348–382 | Zbl

[3] V.N. Knyagina, V.S. Monakhov, “O konechnykh gruppakh s nekotorymi cubnormalnymi podgruppami Shmidta”, Sibirskii matem. zhurn., 45:6 (2004), 1316–1322 | Zbl

[4] V.A. Vedernikov, “Konechnye gruppy s subnormalnymi podgruppami Shmidta”, Algebra i logika, 46:6 (2007), 669–687 | Zbl

[5] V.P. Burichenko, “O gruppakh, elementy malykh poryadkov kotorykh porozhdayut maluyu podgruppu”, Matem. zametki, 92:3 (2012), 361–367 | Zbl

[6] Y. Berkovich, Z. Janko, Groups of Prime Power Order, v. 3, Walter de Gruyter, 2011, 639 pp. | Zbl

[7] V.N. Knyagina, “O proizvedenii $B$-gruppy i primarnoi gruppy”, Problemy fiziki, matematiki i tekhniki, 2017, no. 3(32), 52–57

[8] B. Huppert, Endliche Gruppen I, Berlin–Heidelberg–New York, 1967, 796 pp. | Zbl

[9] V.S. Monakhov, Vvedenie v teoriyu konechnykh grupp i ikh klassov, Vysheishaya shkola, Minsk, 2006, 207 pp.

[10] V.S. Monakhov, “Podgruppy Shmidta, ikh suschestvovanie i nekotorye prilozheniya”, Ukr. matem. kongress, sb. tr., In-t matem. NAN Ukrainy, Kiev, 2002, 81–90

[11] V.S. Monakhov, “Ob indeksakh maksimalnykh podgrupp konechnykh razreshimykh grupp”, Algebra i logika, 43:4 (2004), 411–424 | Zbl

[12] M.N. Konovalova, V.S. Monakhov, “Konechnye gruppy s nekotorymi subnormalnymi 2-maksimalnymi podgruppami”, Problemy fiziki, matematiki i tekhniki, 43:2 (2020), 75–79

[13] GAP — Groups, Algorithms, Programming — a System for Computational Discrete Algebra, (Date of access: 15.02.2021) http://www.gapsystem.org