Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2021_3_a7, author = {E. I. Starovoitov}, title = {Bending of a three-layer plate by a uniformly distributed load in the neutron flux}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {56--62}, publisher = {mathdoc}, number = {3}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PFMT_2021_3_a7/} }
E. I. Starovoitov. Bending of a three-layer plate by a uniformly distributed load in the neutron flux. Problemy fiziki, matematiki i tehniki, no. 3 (2021), pp. 56-62. http://geodesic.mathdoc.fr/item/PFMT_2021_3_a7/
[1] M.A. Zhuravkov, E.I. Starovoitov, Mekhanika sploshnykh sred. Teoriya uprugosti i plastichnosti, BGU, Minsk, 2011, 540 pp.
[2] K.G. Golovko, P.Z. Lugovoi, V.F. Meish, Dinamika neodnorodnykh obolochek pri nestatsionarnykh nagruzkakh, Kievskii un-t, Kiev, 2012, 541 pp.
[3] A.G. Gorshkov, E.I. Starovoitov, A.V. Yarovaya, Mekhanika sloistykh vyazkouprugoplasticheskikh elementov konstruktsii, FIZMATLIT, M., 2005, 576 pp.
[4] E.I. Starovoitov, M.A. Zhuravkov, D.V. Leonenko, Trekhsloinye sterzhni v termoradiatsionnykh polyakh, Belaruskaya navuka, Minsk, 2017, 2017. - 276 pp.
[5] A.G. Gorshkov, É.I. Starovoitov, Yarovaya A. V., “Harmonic Vibrations of a Viscoelastoplastic Sandwich Cylindrical Shell”, International applied mechanics, 37:9 (2001), 1196–1203 | DOI | Zbl
[6] E.I. Starovoitov, D.V. Leonenko, D.V. Tarlakovsky, “Resonance vibrations of circular composite plates on an elastic foundation”, Mechanics of Composite Materials, 51:5 (2015), 561–570 | DOI
[7] V.N. Paimushin, “Theory of moderately large deflections of sandwich shells having a transversely soft core and reinforced along their contour”, Mechanics of Composite Materials, 53:1 (2017), 3–26 | DOI
[8] V.S. Deshpande, N.A. Fleck, “Dynamic Response of a Clamped Circular Sandwich Plate Subject to Shock Loading”, J. Appl. Mech., 71:5 (2004), 637–645 | DOI | Zbl
[9] L. Škec, G. Jelenić, “Analysis of a geometrically exact multi-layer beam with a rigid interlayer connection”, Acta Mechanica, 225:2 (2014), 523–541 | DOI
[10] J. Belinha, L.M. Dints, “Nonlinear Analysis of Plates and Laminates Using the Element Free Galerkin Method”, Composite Structures, 78:3 (2007), 337–350 | DOI
[11] D. Julien, S. Karam, “Limit analysis of multi-layered plates. Part II: The Homogenesized Love-Kirchhoff Model”, Journal of the Mechanics and Physics of Solids, 56:2 (2008), 561–580 | DOI | Zbl
[12] E.I. Starovoitov, A.V. Yarovaya, D.V. Leonenko, “Deformirovanie uprugogo trekhsloinogo sterzhnya lokalnymi nagruzkami”, Problemy mashinostroeniya i avtomatizatsii, 2001, no. 4, 37–40
[13] V.V. Moskvitin, E.I. Starovoitov, “Deformation and variable loading of two-layer metal-polymer plates”, Mechanics of Composite Materials, 21:3 (1985), 267–273 | DOI
[14] E.I. Starovoitov, Yu.M. Pleskachevskii, A.V. Yarovaya, “Deformirovanie trekhsloinoi krugovoi plastiny v usloviyakh polzuchesti”, Problemy fiziki, matematiki i tekhniki, 2021, no. 2 (47), 57–63
[15] A.G. Kozel, “Matematicheskaya model deformirovaniya krugovoi trekhsloinoi plastiny na osnovanii Pasternaka”, Problemy fiziki, matematiki i tekhniki, 2017, no. 1(30), 42–46
[16] A.G. Kozel, “Vliyanie sdvigovoi zhestkosti osnovaniya na napryazhennoe sostoyanie sendvich-plastiny”, Fundamentalnye i prikladnye problemy tekhniki i tekhnologii, 2018, no. 6 (332), 25–35
[17] Yu.V. Zakharchuk, “Deformirovanie krugovoi trekhsloinoi plastiny so szhimaemym zapolnitelem”, Problemy fiziki, matematiki i tekhniki, 2017, no. 4 (4), 53–57
[18] Yu.V. Zakharchuk, “Trekhsloinaya krugovaya uprugoplasticheskaya plastina so szhimaemym zapolnitelem”, Problemy fiziki, matematiki i tekhniki, 2018, no. 4 (37), 72–79
[19] M.A. Zenkour, N.A. Alghamdi, “Thermomechanical bending response of functionally graded nonsymmetric sandwich plates”, Journal of Sandwich Structures and Materials, 12:1 (2010), 7–46 | DOI
[20] A.M. Zenkour, N.A. Alghamdi, “Bending Analysis of Functionally Graded Sandwich Plates under the Effect of Mechanical and Thermal Loads”, Mechanics of Advanced Materials and Structures, 17:6 (2010), 419–432 | DOI
[21] E.I. Starovoitov, “Termosilovoe nagruzhenie trekhsloinykh pologikh obolochek”, Izv. AN SSSR. Mekhanika tverdogo tela, 1989, no. 5, 114–119
[22] E.I. Starovoitov, D.V. Leonenko, D.V. Tarlakovskii, “Deformirovanie trekhsloinoi krugovoi tsilindricheskoi obolochki v temperaturnom pole”, Problemy mashinostroeniya i avtomatizatsii, 2016, no. 1, 91–97
[23] A.V. Nesterovich, “Napryazhennoe sostoyanie krugovoi trekhsloinoi plastiny pri osesimmetrichnom nagruzhenii v svoei ploskosti”, Mekhanika. Issledovaniya i innovatsii, 2019, no. 12, 152–157
[24] A.V. Nesterovich, “Neosesimmetrichnoe termosilovoe deformirovanie krugovoi odnosloinoi plastiny”, Problemy fiziki, matematiki i tekhniki, 2016, no. 2 (27), 54–61
[25] M.A. Gundina, “Opredelenie nachalnogo napravleniya razvitiya treschiny v moment stragivaniya”, Problemy fiziki, matematiki i tekhniki, 2019, no. 1 (38), 40–44
[26] A.A. Ilyushin, P.M. Ogibalov, Uprugoplasticheskie deformatsii polykh tsilindrov, Izd-vo MGU, M., 1960, 224 pp.
[27] P.A. Platonov, Deistvie oblucheniya na strukturu i svoistva metallov, Mashinostroenie, M., 1971, 40 pp.
[28] I.S. Kulikov, V.B. Nesterenko, B.E. Tverkovkin, Prochnost elementov konstruktsii pri obluchenii, Navuka i tekhnika, Minsk, 1990, 144 pp.
[29] E.I. Starovoitov, D.V. Leonenko, “Deformation of a threelayer rod with a compressible core in a neutron flow”, International Applied Mechanics, 56:1 (2020), 81–91 | DOI
[30] E.I. Starovoitov, “Izmenenie neitronnogo potoka pri prokhozhdenii cherez trekhsloinuyu plastinu”, Mezhdunarodnyi sbornik nauchnykh trudov, Mekhanika. Issledovaniya i innovatsii, 13 (13), 2020, 141–146