Axisymmetric loading of a circular physically nonlinear three-layer plate in its plane
Problemy fiziki, matematiki i tehniki, no. 3 (2021), pp. 24-29.

Voir la notice de l'article provenant de la source Math-Net.Ru

The displacements in a circular physically nonlinear three-layer plate under axisymmetric thermal force loading in its plane are investigated. For thin bearing layers, the relations of the theory of small elastic-plastic deformations are used. A relatively thick filler is physically non-linearly elastic. The distributed load depends on the radial coordinate and is applied in the median plane of the filler. Systems of differential equations of equilibrium in forces and in displacements are given. To solve the boundary value problem, an iteration method based on the Ilyushin elastic solution method is proposed. The numerical approbation of the obtained solution is carried out.
Keywords: round three-layer plate, displacements, axisymmetric tension-compression, plasticity.
@article{PFMT_2021_3_a3,
     author = {A. V. Nestsiarovich},
     title = {Axisymmetric loading of a circular physically nonlinear three-layer plate in its plane},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {24--29},
     publisher = {mathdoc},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2021_3_a3/}
}
TY  - JOUR
AU  - A. V. Nestsiarovich
TI  - Axisymmetric loading of a circular physically nonlinear three-layer plate in its plane
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2021
SP  - 24
EP  - 29
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2021_3_a3/
LA  - ru
ID  - PFMT_2021_3_a3
ER  - 
%0 Journal Article
%A A. V. Nestsiarovich
%T Axisymmetric loading of a circular physically nonlinear three-layer plate in its plane
%J Problemy fiziki, matematiki i tehniki
%D 2021
%P 24-29
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2021_3_a3/
%G ru
%F PFMT_2021_3_a3
A. V. Nestsiarovich. Axisymmetric loading of a circular physically nonlinear three-layer plate in its plane. Problemy fiziki, matematiki i tehniki, no. 3 (2021), pp. 24-29. http://geodesic.mathdoc.fr/item/PFMT_2021_3_a3/

[1] A.G. Gorshkov, E.I. Starovoitov, A.V. Yarovaya, Mekhanika sloistykh vyazkouprugoplasticheskikh elementov konstruktsii, FIZMATLIT, M., 2005, 576 pp.

[2] M.A. Zhuravkov, E.I. Starovoitov, Mekhanika sploshnykh sred. Teoriya uprugosti i plastichnosti, BGU, Minsk, 2011, 540 pp.

[3] E.I. Starovoitov, M.A. Zhuravkov, D.V. Leonenko, Trekhsloinye sterzhni v termoradiatsionnykh polyakh, Belaruskaya navuka, Minsk, 2017, 275 pp.

[4] I. Ivañez et al., “The oblique impact response of composite sandwich plates”, Composite Structures, 133 (2015), 1127–1136 | DOI

[5] V.S. Deshpande, N.A. Fleck, “Dynamic Response of a Clamped Circular Sandwich Plate Subject to Shock Loading”, J. Appl. Mech., 71:5 (2004), 637–645 | DOI | Zbl

[6] A.G. Gorshkov, É.I. Starovoitov, A.V. Yarovaya, “Harmonic Vibrations of a Viscoelastoplastic Sandwich Cylindrical Shell”, International applied mechanics, 37:9 (2001), 1196–1203 | DOI | Zbl

[7] E.I. Starovoitov, D.V. Leonenko, D.V. Tarlakovsky, “Resonance vibrations of circular composite plates on an elastic foundation”, Mechanics of Composite Materials, 51:5 (2015), 561–570 | DOI

[8] E.Yu. Tratsevskaya, “Dinamicheskaya neustoichivost kvazitiksotropnykh morennykh gruntov”, Litosfera, 2017, no. 1 (46), 107–111

[9] E.Yu. Tratsevskaya, “Eksperimentalnoe issledovanie kharakteristik plastichnosti nevodonasyschennykh gruntov”, Matematicheskoe modelirovanie, kompyuternyi i naturnyi eksperiment v estestvennykh naukakh, 2018, no. 1 (Data dostupa: 05.07.2021) http://mathmod.esrae.ru/17-62

[10] Yu.V. Zakharchuk, “Trekhsloinaya krugovaya uprugoplasticheskaya plastina so szhimaemym zapolnitelem”, Problemy fiziki, matematiki i tekhniki, 2018, no. 4 (37), 72–79

[11] Yu.V. Zakharchuk, “Deformirovanie krugovoi trekhsloinoi plastiny so szhimaemym zapolnitelem”, Problemy fiziki, matematiki i tekhniki, 2017, no. 4 (33), 53–57

[12] A.S. Zelenaya, “Napryazhenno-deformirovannoe sostoyanie termouprugoi trekhsloinoi pryamougolnoi plastiny so szhimaemym zapolnitelem”, Izvestiya Gomelskogo gosudarstvennogo universiteta imeni F. Skoriny, 2018, no. 6 (111), 98–104

[13] A.S. Zelenaya, “Napryazhenno-deformirovannoe sostoyanie uprugoi trekhsloinoi pryamougolnoi plastiny so szhimaemym zapolnitelem”, Mekhanika. Issledovaniya i innovatsii, 2017, no. 10, 67–74

[14] A.A. Dzhagangirov, “Nesuschaya sposobnost trekhsloinoi voloknistoi kompozitnoi koltsevoi plastinki, zaschemlennoi po kromkam”, Mekhanika kompozitnykh materialov, 51:2 (2015), 100–109

[15] R.V. Goldshtein i dr., “Neosesimmetrichnaya poterya ustoichivosti pri osesimmetrichnom nagreve krugloi plastiny”, Vestn. Permskogo natsionalnogo issledovatelskogo politekhnicheskogo universiteta. Mekhanika, 2016, no. 2, 45–53

[16] E.I. Starovoitov, “Termosilovoe nagruzhenie trekhsloinykh pologikh obolochek”, Izv. AN SSSR. Mekhanika tverdogo tela, 1989, no. 5, 114–119

[17] E.I. Starovoitov, D.V. Leonenko, D.V. Tarlakovskii, “Deformirovanie trekhsloinoi krugovoi tsilindricheskoi obolochki v temperaturnom pole”, Problemy mashinostroeniya i avtomatizatsii, 2016, no. 1, 91–97

[18] D. Julien, S. Karam, “Limit analysis of multi-layered plates. Part II: The Homogenesized Love-Kirchhoff Model”, Journal of the Mechanics and Physics of Solids, 56:2 (2008), 561–580 | DOI | Zbl

[19] V.V. Moskvitin, E.I. Starovoitov, “Deformation and variable loading of two-layer metal-polymer plates”, Mechanics of Composite Materials, 21:3 (1985), 267–273 | DOI

[20] A.G. Kozel, “Nelineinyi izgib sendvichplastiny na osnovanii Pasternaka”, mezhdunar. nauch.-tekhn. sb., Teoreticheskaya i prikladnaya mekhanika, 35, BNTU, Minsk, 2020, 106–113

[21] A.G. Kozel, “Sravnenie reshenii zadach izgiba trekhsloinykh plastin na osnovaniyakh Vinklera i Pasternaka”, Mekhanika mashin, mekhanizmov i materialov, 2021, no. 1 (54), 30–37

[22] A.G. Kozel, “Vliyanie sdvigovoi zhestkosti osnovaniya na napryazhennoe sostoyanie sendvich-plastiny”, Fundamentalnye i prikladnye problemy tekhniki i tekhnologii, 2018, no. 6 (332), 25–35

[23] A.V. Nesterovich, “Napryazhennoe sostoyanie krugovoi trekhsloinoi plastiny pri osesimmetrichnom nagruzhenii v svoei ploskosti”, mezhdunar. sb. nauch. tr., Mekhanika. Issledovaniya i innovatsii, 12, 2019, 152–157

[24] A.V. Nesterovich, “Neosesimmetrichnoe termosilovoe deformirovanie krugovoi odnosloinoi plastiny”, Problemy fiziki, matematiki i tekhniki, 2016, no. 2 (27), 54–61

[25] A.V. Nesterovich, “Neosesimmetrichnoe nagruzhenie trekhsloinoi krugovoi plastiny v svoei ploskosti”, mezhdunar. nauch.-tekhn. sb., Teoreticheskaya i prikladnaya mekhanika, 35, 2020, 266–272

[26] A.V. Nesterovich, “Deformirovanie trekhsloinoi krugovoi plastiny pri kosinusoidalnom nagruzhenii v svoei ploskosti”, Problemy fiziki, matematiki i tekhniki, 2020, no. 1 (42), 85–90

[27] A.V. Nesterovich, “Radialnoe i tangentsialnoe neosesimmetrichnoe nagruzhenie krugovoi trekhsloinoi plastiny”, mezhdunar. sb. nauch. tr., Mekhanika. Issledovaniya i innovatsii, 13, BelGUT, Gomel, 2020, 116–121 | Zbl

[28] E.I. Starovoitov, A.V. Nesterovich, “Neosesimmetrichnoe deformirovanie svobodno opertoi trekhsloinoi plastiny v svoei ploskosti”, Mekhanika kompozitsionnykh materialov i konstruktsii, 2021, no. 1 (27), 17–30

[29] E.I. Starovoitov, A.V. Nesterovich, “Neosesimmetrichnoe deformirovanie krugovoi trekhsloinoi plastiny v svoei ploskosti”, Mekhanika mashin, mekhanizmov i materialov, 2021, no. 1 (54), 38–45

[30] E.I. Starovoitov, “Description of the thermomechanical properties of some structural materials”, Strength of materials, 20:4 (1988), 426–431 | DOI